Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The use of bone marrow mononuclears in the treatmentof patients with severe ischemic heart disease

Authors: N.E. Alieva

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2019-16-3-165-174

UDC: 616.12-005.4-08:611.018.46:576.5

Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (3): 165-174

Quote as: Alieva N.E. The use of bone marrow mononuclears in the treatment of patients with severe ischemic heart disease. Clinical Physiology of Circulation. 2019; 16 (3): 165–74 (in Russ.). DOI: 10.24022/1814-6910-2019-16-3-165-174

Received / Accepted:  02.04.2019/12.08.2019

Full text:  

Abstract

The low ability of a myocardium to regeneration at adults considerably limits its recovery abilities in case of ischemia and leads to development of complications in the form of development of postinfarction aneurysms, an ischemic cardiomyopathy with decrease in fraction of emission, and in the subsequent to heart failure. Use of cellular technologies together with surgical methods of treatment and conservative therapy, can replace the damaged sites of a myocardium with the living functioning cells. However active introduction of cellular technologies into experimental and practical medicine leads to the emergence of a number of questions: how efficiently did cell transplantation take, how many cells are transplanted and their “descendants” in the recipient's body, what is the localization of cells in the tissues, how has differentiation gone. To assess the engraftment of mesenchymal stem cells in the recipient's body, it is necessary to monitor the cells after their transplantation.

This review describes the morphology of the structure of the myocardium, the cytological mechanisms of myocardial damage in coronary artery disease, also presents methods for labeling cells to identify the most effective methods of administration.

References

  1. Baniol M., Panula J., Reinhardt S., Graham E.L., Lazar E., Bergmann O. P64 Identification and isolation of cycling cardiomyocytes for single cell analysis. Cardiovasc. Res. 2018; 1: 16–7. DOI: 10.1093/cvr/cvy060.029
  2. Кирик В.М. Стволовые клетки из жировой ткани: основные характеристики и перспективы клинического применения в регенеративной медицине. Журнал АМН України. 2010; 16 (4): 576–604. [Kirik V.M. Adipose tissue stem cells: main characteristics and prospects of clinical application in regenerative medicine. Journal Academy of Medical Sciences of Ukraine. 2010; 16 (4): 576–604 (in Russ.).]
  3. Яргин С.В. Стволовые клетки и клеточная терапия: на подступах к научному подходу. Цитология. 2010; 11: 918–20. [Yargin S.V. Stem cells and cell therapy: on the approaches to the scientific approach. Cytology. 2010; 11: 918–20 (in Russ.).]
  4. Сидорова В.Ф., Большакова Г.Б. Особенности роста и восстановления миокарда млекопитающих. В сб.: Клеточные основы регенерации у млекопитающих. М.; 1984: 18–40. [Sidorova V.F., Bol'shakova G.B. Peculiarities of the growth and recovery of the myocardium of mammals. In: Cellular bases of regeneration in mammals. Moscow; 1984: 18–40 (in Russ.).]
  5. Urbanbek K., Qualini F., Tasca G., Torella D., Castaldo C., Nadal-Ginard B. et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. PNAS. 2003; 12 (18): 341–4. DOI: 10.1073/pnas.1832855100
  6. Ferrara N., Heinsohn H., Walder C.E., Bunting S., Thomas G.R. The regulation of blood vessel growth by vascular endothelial growth factor. Ann. N. Y. Acad. Sci. 1995; 752: 246–56. DOI: 10.1111/j.1749-6632.1995.tb17435.x
  7. Борисов А.Б., Румянцев П.П. Синтез РНК в культурах предсердных и желудочковых кардиомиоцитов крысы. Цитология. 1985; 27 (9): 990–4. [Borisov A.B., Rumyantsev P.P. Synthesis of RNA in rat cardiac and ventricular cultures. Cytology. 1985; 27 (9): 990–4 (in Russ.).]
  8. Itescu S., Schuster M.D., Kocher A.A. New directions in strategies using cell therapy for heart disease. J. Mol. Med. 2003; 81 (5): 288–96. DOI: 10.1007/s00109-003-0432-0
  9. Дергилев К.В., Рубина К.А., Цоколаева З.И., Сысоева В.Ю., Гмызина А.И., Калинина Н.И. и др. Аневризма левого желудочка – возможный источник резидентных стволовых клеток сердца. Цитология. 2010; 52 (11): 921–30. [Dergilev K.V., Rubina K.A., Tsokolaeva Z.I., Sysoeva V.Yu., Gmyzina A.I., Kalinina N.I. et al. Aneurysm of the left ventricle is a possible source of resident heart stem cells. Cytology. 2010; 52 (11): 921–30 (in Russ.).]
  10. Matur A., Martin J.F. Stem cells and repair of the heart. Lancet. 2004; 364 (9429): 183–92. DOI: 10.1016/s0140-6736(04)16632-4
  11. Кругляков П., Соколова И., Аминева Х., Некрасова Н., Вийде С., Чередниченко Н. и др. Влияние сроков трансплантации мезенхимных стволовых клеток на репарацию сердечной мышцы крыс после инфаркта. Цитология. 2005; 47 (5): 404–16. [Kruglyakov P., Sokolova I., Amineva Kh., Nekrasova N., Viyde S., Cherednichenko N. et al. Effect of time of transplantation of mesenchymal stem cells to repair cardiac muscle of rats after a heart attack. Cytology. 2005; 47 (5): 404–16 (in Russ.).]
  12. Fukuda K. Development of regenerative cardiomiocytes from mesenchymal stem cells for cardiovascular tissue engeneering. Artif. Organs. 2001; 3: 187–93. DOI: 10.1046/j.1525-1594.2001.025003187.x
  13. Wakitani S., Satio T., Caplan A. Myogenic derived from rat bone marrow mesenhymal stem cells exposed to 5-azacitidine. Musc. Nerve J. 1995; 18: 1417–26. DOI: 10.1002/mus.880181212
  14. Klyachkin Y., Karapetyan S., Smyth S., Ratajczak M., Morris A.A., Abdel-Latif A. Potential role of sphingosine- 1-phosphate in cardiac and endothelial differentiation of mobilized bone marrow stem/progenitor cells – a potential therapeutic target. Circulation. 2018; 126. DOI: 10.1155/2016/8606878
  15. Tao Li, Zhang Xia, Jiang K., Jing L., Zhiqiang L. Dural effects of oxidative stress on cardiomyogenesis via GATA4 transcription and protein uniquitinardiac and endothelial differentiation of mobilized bone marrow stem/progenitor cells – a ation. Cell. Death Dis. 2018; 9: 246. DOI: 10.1038/s41419-018-0281-y
  16. Fukuhara S., Tommita S., Yamashiro S., Morisaki T., Yutani C., Kitamura S., Nakatani T. Direct cell-cell interaction of cardiomeocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J. Thorac. Cardiovasc. Surg. 2003; 6: 1470–80. DOI: 10.1016/s0022-5223(02)73610-6
  17. Makino S., Fukuda K., Mioshi S., Konishi F., Kodama H., Pan J. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 1999; 103: 697–705. DOI: 10.1172/JCI5298
  18. Davani S., Marandin A., Mersin N., Royer B., Kantelip B., Herve P. et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation. 2003; 108: II253–8. DOI: 10.1161/01.cir.0000089186.09692.fa
  19. Jiang Z., Hu X., Yu H., Xu Y., Wang L., Chen H. et al. Human endometrial stem cells confer enhanced myocardial salvage and regeneration by paracrine mechanisms. J. Cell. Mol. Med. 2013; 17: 1247–60. DOI: 10.1111/jcmm.12100
  20. Li B., Zeng Q., Wang H., Shao S., Mao X., Zhang F. et al. Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coron. Art. Dis. 2007; 18: 221–7. DOI: 10.1097/MCA.0b013e32801235da
  21. Sadat S., Gehmert S., Song Y.-H., Yen Y., Bai X., Gaiser S. et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem. Biophysic. Res. Communic. 2007; 363: 674–9. DOI: 10.1016/j.bbrc.2007.09.058
  22. Theiss H., Krieg L., Weigant S., David R., Mueller- Hoecker J., Franz W.M. Effects of dual stem cell therapy (g-csf+sitagliptin) on cardiac levels of micrornas after myocardial infarction. Circulation. 2018; 124: A10741
  23. Madonna R., Geng Y.-J., Caterina R.D. Adipose tissue- derived stem cells characterization and potential for cardiovascular repair. Arteriosc. Thromb. Vasc. Biol. 2009; 29: 1723–9. DOI: 10.1161/ATVBAHA.109.187179
  24. Uemura R., Xu M., Ahmad N., Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res. 2006; 98: 1414–21. DOI: 10.1161/01.res.0000225952.61196.39
  25. Krijn R.V., Chamuleau S.A., Doevendans P.A., Sluijter J.P. Cardiomyocyte progenitor cell and mesenchymal stem cell exosomes stimulate the angiogenic capacity of endothelial cells. Circulation. 2018; 124: A13837
  26. Weston S.A., Parish C.R. New fluorescent dyes for lymphocyte migration studies: analysis by flow cytometry and fluorescence microscopy. J. Immunol. Meth. 1990; 133: 87–97.
  27. Chang Q., Yan L., Wang C.Z., Zhang W.H., Hu Y.Z., Wu B.Y. In vivo transplantation of bone marrow mesenchymal stem cells accelerates repair of injured gastric mucosa in rats. Chin. Med. J. (Engl). 2012; 125 (6): 1169–74.
  28. Sato M., Uchida K., Nakajima H., Miyazaki T., Guerrero A., Watanabe S. et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res. Ther. 2012; 14 (1): 4–9. DOI: 10.1186/ar3735
  29. Li L., Jiang W., Luo K., Song H., Lan F., Wu Y. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics. 2013; 3 (8): 595–615. DOI: 10.7150/thno.5366
  30. Weaner L.E., Hoerr D.C. Synthesis and application of radioisotopes in pharmaceutical research and development. In: Abdel Magid A.F., Caron S. (Eds). Fundamentals of early clinical drug development: from synthesis design to formulation. New York: Wiley; 2006: 189–214. DOI: 10.1002/0470043407.ch11
  31. Lewellen T.K. Recent developments in PET detector technology. Phys. Med. Biol. 2008; 53: 287–317. DOI: 10.1088/0031-9155/53/17/r01
  32. Massoud T.F., Gambhir S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Develop. 2003; 17: 545–80. DOI: 10.1101/gad.1047403
  33. Charles H., Beh C.W., Parag Karmarkar, Johnston P.V., Wang J.T., Hai-Quan Mao et al. Transmyocardial catheter- based microencapsulated mesenchymal stem cell delivery for cardiac regenerative therapy. Circulation. 2018; 128: A15579
  34. Chen I.Y., Wu J.C. Cardiovascular molecular imaging: focus on clinical translation. Circulation 2011; 123: 425–43. DOI: 10.1161/circulationaha.109.916338
  35. Muller C.E., Pleiffer P., Koglin J., Schäfers H.-J., Seeland U., Janzen I. et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circ. 2002; 106 (1): 31–5. DOI: 10.1161/01.cir.0000022405.68464.ca
  36. Penn M.S., Zhang M., Deglurkar I., Topol E.J. Role of stem homing in myocardial regeneration. Int. J. Cardiol. 2004; 95 (1): 23. DOI: 10.1016/s0167-5273(04)90007-1
  37. Williams A.R., Suncion V.Y., McCall F., Guerra D., Mather J., Carvalho D. et al. Durable infarct size reduction due to allogeneic mesenchymal stem cell therapy regulates whole-chamber left ventricular remodeling. Circulation. 2018; 126: A12019
  38. Laflame M.A., Murry C.E. Regenerating the heart. Nat. Biotehnol. 2005; 23: 845–56. DOI: 10.1038/nbt1117
  39. Yang Z., Zhang F., Ma W., Chen B., Zhou F., Xu Z. A novel approach to transplanting bone marrow stem cells to repair human MI: delivery via a noninfarct-relative artery. Cardiovasc. Ther. 2010; 28: 380–5. DOI: 10.1111/j.1755-5922.2009.00116.x
  40. Katritsis D.G., Sotiropoulou P., Giazitzoglou E., Karvouni E., Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace. 2007; 9: 167–71. DOI: 10.1002/ccd.20406
  41. Chen S., Liu Z., Tian N., Zhang J., Yei F., Duan B. et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J. Invas. Cardiol. 2006; 18: 552–6.
  42. Golpanian S., El-Khorazaty J., Mendizabal A., Difede D.L., Balkan W., Hare J.M. Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. Circulation. 2018; 130: A19177. DOI: 10.1016/j.jacc.2014.10.040
  43. Nagaya N., Fujii T., Iwase T., Oligushi H., Itoh T., Uematsu M. et al. Intravenous administratin of mesenhimal stemm cells improves cardiac function in rats with acute myocardial infarction throuth angiogenesis and miogenesis. Phisiol. Heart Circ. Phisiol. 2004; 287 (6): 2670–6. DOI: 10.1152/ajpheart.01071.2003
  44. Кругляков П., Соколова И., Зинькова Н., Вийде С., Александров Г., Петров Н., Полынцев Д. Дифференцировка мезенхимальных стволовых клеток в кардиомиогенном направлении in vitro и in vivo. Цитология. 2006; 4: 194–7. [Kruglyakov P., Sokolova I., Zin'kova N., Viyde S., Aleksandrov G., Petrov N., Polyntsev D. Differentiation of mesenchymal stem cells in cardiomyogenic direction in vitro and in vivo. Cytology. 2006; 4: 194–7 (in Russ.).]
  45. Balsam L.B., Wagers A.J., Chritisen J.L., Kofidis T., Weissman I.L., Robinis R.C. Haematopoietic stem cells adopt mature haematopoietic fates in ishaemic myocardium. Nature. 2004; 428: 668–73. DOI: 10.1038/nature02460
  46. Guijarro D., Lebrin M., Lairez O., Bourin Ph., Piriou N., Pozzo J. et al. Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and decreased left ventricular function: 1-year results of the MESAMI phase I clinical trial. Circulation. 2013; 128: A12345
  47. Strauer B.E., Yoursef M., Shannwell C.M. The acute and long-term effects of intracoronary stem cell transplantation in 191 patients with chronic heart failure: the STAR-heart study. Eur. J. Heart Fail. 2010; 3: 89–96. DOI: 10.1093/eurjhf/hfq095
  48. Assmus B., Rolf A., Erbs S., Elsasser A., Haberbosch W., Hambrecht R. et al. REPEIR-AMI. Investigators. Clinical outcome 2 years after intracoronary administration of bone marrow – derived progenitor cells in acute myocardial infarction. Circ. Heart Fail. 2010; 3: 89–96. DOI: 10.1161/circheartfailure.108.843243

About Authors

Nailya E. Alieva, Postgraduate; orcid.org/0000-0003-0283-0545

 If you found mistakes, select text and press Alt+A