Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Cardioprotective effects of sevoflurane in pediatric congenital heart disease corrective surgery

Authors: O.A. Stepanicheva, M.M. Rybka

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2019-16-2-85-93

UDC: 616.12-007-053.2-089:615.211

Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (2): 85-93

Quote as: Stepanicheva O.A., Rybka M.M. Cardioprotective effects of sevoflurane in pediatric congenital heart disease corrective surgery. Clinical Physiology of Circulation. 2019; 16 (2): 85–93 (in Russ.). DOI: 10.24022/1814-6910-2019-16- 2-85-93

Received / Accepted:  January 31, 2019 / February 4, 2019

Full text:  

Abstract

Cardioprotective effect of volatile anesthetics in cardiac surgery with the use of cardiopulmonary bypass (CPB), has been studied starting from the 20th century and has been fully confirmed in adult patients and applied in clinical practice. Yet, in pediatric cardiac surgery the cardioprotective effect of halogene-containing anesthetics is still being looked into. This article contains the current understanding of the mechanisms of preconditioning and organoprotection, a review of the most significant research papers on cardioprotection effect in adult patients. The author has also described and analyzed the existing studies of anesthetic preconditioning in pediatric congenital heart disease corrective surgery with CPB.

References

  1. Landoni G., Greco T., Biondi-Zoccai G., Nigro Neto C., Febres D., Pintaudi M. et al. Anaesthetic drugs and survival: a Bayesian network meta-analysis of randomized trials in cardiac surgery. Br. J. Anaesth. 2013; 111: 886–96. DOI: 10.1093/bja/aet231

  2. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124–36. DOI: 10.1161/01.cir.74.5.1124

  3. Kuzuya T., Hoshida S., Yamashita N., Fuji H., Oe H., Hori M. et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ. Res. 1993; 72 (6): 1293–9. DOI: 10.1161/01.res.72.6.1293

  4. Cason B.A., Gamperl A.K., Slocum R.E., Hickey R.F. Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology. 1997; 87 (5): 1182–90. DOI: 10.1097/00000542-199711000-00023

  5. Marber M., Walker D., Yellon D. Ischaemic preconditioning. B.M.J. 1994; 308 (6920): 1–2. DOI: 10.1136/bmj.308.6920.1

  6. Zhi-Qing Zhao, Corvera J.S., Halkos M.E., Kerendi F., Ning-Ping Wang, Guyton R.A. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 2003; 285: H579–H588. DOI: 10.1152/ajpheart.01064.2002

  7. Kharbanda R.K. Cardiac conditioning: a review of evolving strategies to reduce ischemia-reperfusion injury. Heart. 2010; 96: 1179–86. DOI: 10.1136/hrt.2009.179101

  8. Капелько В.И. Эволюция концепции и метаболическая основа ишемической дисфункции миокарда. Кардиология. 2005; 45 (9): 55–61. [Kapel'ko V.I. Evolution of the concept and metabolic basis of ischemic myocardial dysfunction. Cardiology. 2005; 45 (9): 55–61 (in Russ.).]

  9. Бабалян Г.В., Мещеряков А.В. Защита миокарда от ишемических и реперфузионных повреждений. В кн.: Руководство по кардиоанестезиологии. М.: Медицинское информационное агентство; 2005: 88–121. [Babalyan G.V., Meshcheryakov A.V. Myocardial protection against ischemic and reperfusion injuries. In: A guide to cardiac anesthesiology. Moscow: Meditsinskoe Informatsionnoe Agentstvo; 2005: 88–121 (in Russ.).]

  10. Garcia-Dorado D., Theroux P., Munoz R., Alonso J., Elizaga J., Fernandez-Aviles F. et al. Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am. J. Physiol. 1992; 262: H17–22. DOI: 10.1152/ajpheart.1992.262.1.h17

  11. Ruiz-Meana M., García-Dorado D., González M.A., Barrabés J.A., Soler-Soler J. Effect of osmotic stress on sarcolemmal integrity of isolated cardiomyocytes following transient metabolic inhibition. Cardiovasc. Res. 1995; 30: 64–9. DOI: 10.1016/s0008-6363(95)00008-9

  12. Lefer J.W., Granger N. Oxidative stress and cardiac disease. Am. J. Med. 2000; 109 (4): 315–23. DOI: 10.1016/s0002-9343(00)00467-8

  13. Barandier C., Tanguy S., Pucheu S., Boucher F., Leiris J. Effect of antioxidant trace elements on the response of cardiac tissue to oxidative stress. An. NY Acad. Sci. 1999; 874: 138–55. DOI: 10.1111/j.1749-6632.1999.tb09232.x

  14. Gottlieb R., Engler R. Apoptosis in myocardial ischemia-reperfusion. An. NY Acad. Sci. 1999; 874: 412–26. DOI: 10.1111/j.1749-6632.1999.tb09255.x

  15. Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 1998; 60: 619–52. DOI: 10.1146/annurev.physiol.60.1.619

  16. Liest M., Single B., Castoldi A., Kühnle S., Nicotera P. IIntracrllular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 1997; 185 (8): 1481–6. DOI: 10.1084/jem.185.8.1481

  17. Батутин А.Е., Гребенчиков О.А., Еременко А.А., Ефремов С.М., Клыпа Т.В., Козлов И.А. и др. Адъювантная кардиопротекция у кардиохирургических больных. М.: ФармЭтика; 2017: 19–20. [Batutin A.I., Grebenchikov O.A., Eremenko A.A., Efremov S.M., Klypa T.V., Kozlov I.A. et al. Adjuvant cardioprotection in capdiosurgical patients. Moscow: FarmEtika; 2017: 19–20 (in Russ.).]

  18. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Molec. Biol. 2012; 298: 229–317. DOI: 10.1016/b978-0-12-394309-5.00006-7

  19. Pac-Soo C.K., Mathew H., Ma D. Ischaemic conditioning strategies reduce ischaemia/reperfusion-induced organ injury. Br. J. Anaesth. 2015; 114 (2): 204–16. DOI: 10.1093/bja/aeu302

  20. Zangrillo A., Testa V., Aldrovandi V., Tuoro A., Casiraghi G., Cavenago F. et al. Volatile agents for cardiac protection in noncardiac surgery: a randomized controlled study. J. Cardiothorac. Vasc. Anesth. 2011; 25: 902–7. DOI: 10.1053/j.jvca.2011.06.016

  21. Murry C.E., Jennings R.B., Reimer K.A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124–36. DOI: 10.1161/01.cir.74.5.1124

  22. Bland J.H., Lowenstein E. Halothane-induced decrease in experimental myocardial ischemia in nonfailing canine heart. Anesthesiology. 1976; 45: 287–93. DOI: 10.1097/00000542-197609000-00006

  23. Warltier D.C., al-Wathiqui M.H., Kampine J.P., Schmeling W.T. Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane. Anesthesiology. 1988; 69: 552–65. DOI: 10.1097/00000542-198810000-00016

  24. Cason B.A., Gamperl A.K., Slocum R.E., Hickey R.F. Anesthetic-induced preconditioning: previous administration of isoflurane decreases myocardial infarct size in rabbits. Anesthesiology. 1997; 87: 1182–90. DOI: 10.1097/00000542-199711000-00023

  25. Pagel P.S., Hundetz J.A. Delayed cardioprotection by inhaled anesthetics. Cardiothorac. Vasc. Anesth. 2011; 25: 1125–40. DOI: 10.1053/j.jvca.2010.09.01726.

  26. Zaugg M., Lucchinetti E., Uecker M., Pasch T., Schaub M.C. Anaesthetics and cardiac preconditioning – part II: signalling and cytoprotective mechanisms. Br. J. Anaesth. 2003; 91: 566–76. DOI: 10.1093/ bja/aeg205

  27. De Hert S.G., Turani F., Mathur S., Stowe D.F. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth. Analg. 2005; 100: 1584–93. DOI: 10.1213/01.ane.0000153483.61170.0c

  28. Hu Z.Y., Liu J. Mechanism of cardiac preconditioning with volatile anaesthetics. Anaesth. Intensive Care. 2009; 37: 532–8. DOI: 10.1177/0310057x0903700402

  29. Kunst G., Klein A.A. Peri-operative anaesthetic myocardial preconditioning and protection: cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia. 2015; 70: 467–82. DOI: 10.1177/0310057x0903700402

  30. Konia M.R., Schaefer S., Liu H. Nuclear factor-[kappa] B inhibition provides additional protection against ischaemia/reperfusion injury in delayed sevoflurane preconditioning. Eur. J. Anaesthesiol. 2009; 26 (6): 496–503. DOI: 10.1097/eja.0b013e328324ed2e

  31. Qiao S., Xie H., Wang C., Wu X., Liu H., Liu C. Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy. J. Anesth. 2013; 27: 251–60. DOI: 10.1007/s00540-012-1494-3

  32. Novalija E., Varadarajan S.G., Camara A.K., Jianzhong An, Chen Q., Matthias L.R. et al. Anesthetic preconditioning: triggering role of reactive oxygen and nitrogen species in isolated hearts. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H44–52. DOI: 10.1152/ajpheart.01056.2001

  33. Piriou V., Chiari P., Gateau-Roesch O., Argaud L., Muntean D., Salles D. et al. Desflurane-induced preconditioning alters calcium-induced mitochondrial permeability transition. Anesthesiology. 2004; 100 (3): 581–8. DOI: 10.1097/00000542-200403000-00018

  34. De Hert S.G., ten Broecke P.W., Mertens E., Van Sommeren E.W., De Blier I.G., Stockman B.A., Rodrigus I.E. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 2002; 97: 42–9. DOI: 10.1097/00000542-200207000-00007

  35. Awad W.I., Shattock M.J., Chambers D.J. Ischemic preconditioning in immature myocardium. Circulation. 1998; 97: 206–13. DOI: 10.1161/01.cir.97.22.2279

  36. Baker J.E., Holman P., Gross G.J. Preconditioning in immature rabbit hearts. Role of KATP channels. Circulation. 1999; 19; 1249–54. DOI: 10.1161/01.cir.99.9.1249

  37. Malagon I., Hogenbirk K., van Pelt G., Hazekamp M.G., Bovill J.G. Effect of three different anaesthetic agents on the postoperative production of cardiac troponin T in paediatric cardiac surgery. Br. J. Anaesth. 2005; 94: 805–9. DOI: 10.1093/bja/aei142

  38. Taggart D.P., Hadjinikolas L., Wong K., Yap J., Hooper J., Kemp M. et al. Vulnerability of paediatric myocardium to cardiac surgery. Heart. 1996; 76: 214–7. DOI: 10.1136/hrt.76.3.214

  39. Singh P., Chauhan S., Jain G., Talwar S., Makhija N., Kiran U. Comparison of cardioprotective effects of volatile anesthetics in children undergoing ventricular septal defect closure. World J. Pediatr. Congenit. Heart Surg. 2013; 4 (1): 24–9. DOI: 10.1177/2150135112457580

  40. Bettex D.A., Wanner P.M., Bosshart M., Balmer C., Knirsch W., Dave H. et al. Role of sevoflurane in organ protection during cardiac surgery in children: a randomized controlled trial. Interact. Cardiovasc. Thorac. Surg. 2015; 20 (2): 157–65. DOI: 10.1093/icvts/ivu381

  41. Mahdavi L., Abdollahi M.H., Entezari A., Salehi E., Hosseini H., Moshtaghioon S.H. et al. The effect of sevoflurane versus propofol anesthesia on troponin I after congenital heart surgery, a randomized clinical trial. Adv. Biomed. Res. 2015; 4: 86. DOI: 10.4103/2277-9175.156649

  42. Hong-yan Xiong, Yang Liu, Duan-chao Shu, Sheng-li Zhang, Xinhong Qian, Wei-xun Duan et al. Effects of sevoflurane inhalation during cardiopulmonary bypass on pediatric patients: a randomized controlled clinical trial. ASAIO J. 2016; 62 (1): 63–8. DOI: 10.1097/mat.0000000000000285

About Authors

  • O'lga A. Stepanicheva, Anesthesiologist-Intensivist; ORCID

  • Mikhail M. Rybka, Dr. Med. Sc., Head of Department of Anesthesiology and Intensive Care; ORCID


 If you found mistakes, select text and press Alt+A