Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Current state of antioxidants the use in cardiac surgery

Authors: Brichkin Yu.D., Taranov E.V., Fedorov S.A., Medvedev A.P

Company:
1 Specialized Cardiosurgical Clinical Hospital named after academician B.A. Korolev, Nizhny Novgorod, 603950, Russian Federation
2 Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2020-17-4-284-293

UDC: 615.2:616.12-089

Link: Clinical Physiology of Blood Circulaiton. 2020; 4 (17): 284-293

Quote as: Brichkin Yu.D., Taranov E.V., Fedorov S.A., Medvedev A.P. Current state of antioxidants the use in cardiac surgery. Clinical Physiology of Circulation. 2020; 17 (4): 284–93 (in Russ.). DOI: 10.24022/1814-6910-2020-17-4-284-293

Received / Accepted:  07.08.2020 / 18.08.2020

Full text:  

Abstract

In recent decades, cardiac surgery has significantly improved clinical results. In many respects, this was achieved thanks to the improvement of anesthesiological and perfusion support. However, the mortality rates and the number of postope-rative complications still remain high, which dictates the obvious need to search for and level the triggers that trigger a cascade of pathological reactions that lead to complications. Many authors agree that one of the most significant syndromes is a systemic inflammatory response, which, in turn, is largely due to the production of reactive oxygen species in tissues, the appearance of an excess of cytotoxic oxygen radicals, and the development of oxidative stress (OS). Therefore, the study of the role of OS in the pathogenesis of ischemic and reperfusion injuries in cardiac surgery and the search for methods to combat these processes are extremely relevant. There are many compounds that have varying degrees of antioxidant activity. However, the theoretical base created in recent years, the accumulated experimental and clinical data testifying to the pronounced antioxidant effect of molecular hydrogen, makes the study of the properties and application of this unique antioxidant in cardiac surgery very interesting and promising.

References

  1. Claeys M.J., Vandekerckhove Y., Cosyns B., Van de Borne P., Lancellotti P. Summary of 2019 ESC Guidelines on chronic coronary syndromes, acute pulmonary embolism, supraventricular tachycardia and dislipidaemias. Acta Cardiol. 2020. DOI: 10.1080/00015385. 2019.1699282
  2. Smit M., Coetzee A.R., Lochner A. The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J. Cardiothorac. Vasc. Anesth. 2020; 34 (9): 2501–12. DOI: 10.1053/j.jvca.2019.10.005
  3. Nedospasov A., Rafikov R., Beda N., Nudler E. An autocatalytic mechanism of protein nitrosylation. Proc. Natl. Acad. Sci. USA. 2000; 97 (25): 13543–8. DOI: 10.1073/pnas.250398197
  4. Cadenas E., Sies H., Capeillere-Blandin C., Gausson V., Descamps-Latscha B. et al. Oxidative stress: excited oxygen species and enzyme activity. Adv. Enzyme Regul. 1985; 23: 217–37. DOI: 10.1016/0065- 2571(85)90049-4
  5. Hatemi A.C., Ceviker К., Tongut A., Ozgol I., Mert M., Kaya A. et al. Oxidant status following cardiac surgery with phosphorylcholine coated extracorporeal circulation systems. Oxid. Med. Cell. Longev. 2016. DOI: 10.1155/2016/3932092
  6. Levy J.H., Tanaka K.A. Inflammatory response to cardiopulmonary bypass. Ann. Thorac. Surg. 2003; 75 (2): 715–20. 7. Bartels K., Karhausen J., Clambey E.T., Grenz A., Eltzschig H.K. Perioperative organ injury. Anesthesiology. 2013; 119 (6): 1474–89.
  7. Plummer Z.E., Baos S., Rogers C.A., Suleiman M., Bryan A., Angelini G. et al. The effects of propofol cardioplegia on blood and myocardial biomarkers of stress and injury in patients with isolated coronary artery bypass grafting or aortic valve replacement using cardiopulmonary bypass: protocol for a single-center randomized controlled trial. JMIR Research Protocols. 2014; 3 (3): e35.
  8. Landesberg G., Mosseri M., Allan S.J., Joseph S.A., Alpert J.S. Perioperative myocardial infarction. Circulation. 2009; 119 (22): 2936–44. DOI: 10.1161/CIRCULATIONAHA
  9. Schofield Z.V., Woodruff T.M., Halai R., Wu M., Cooper M.A. Neutrophils – a key component of ischemia-reperfusion injury. Shock. 2013; 40 (6): 463–70. PMID: 24088997
  10. Ohara Y., Peterson T.E., Harrison D.G. Hypercholesterolemia increases endothelial superoxide anion prouction. J. Clin. Invest. 1993; 91: 2546–51. DOI: 10.1172/JCI116491
  11. Cai H., Harrison D.G. Endothelial dysfunction in cardiovascular diseases. The role of oxidant stress. Circ. Res. 2000; 87: 840–4. 13. Kerr S., Brosnan M.J., McIntyre M., Reid J.L., Dominiczak A.F., Hamilton C.A. Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension. 1999; 33: 1353–8. DOI: 10.1161/01.HYP.33.6.1353
  12. Pieper G.M., Langenstroer P., Siebeneich W. Diabeticinduced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc. Res. 1997; 34: 145–56.
  13. Lopez Farre A., Casado S. Heart failure, redox alterations, and endothelial dysfunction. Нypertension. 2001; 38: 1400–5.
  14. Haji-Michael P.G. Antioxidant therapy in critically ill. Br. J. Intens. Care. 2000; 10: 88–93. 17. Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit. Care Med. 1997; 25: 1095–100.
  15. Pearson T.A., Mensah G.A., Alexander R.W., Anderson J.L., Cannon I.I., Griqui M. et al. Markers оf inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation. 2003; 107 (3): 499–511. DOI: 10.1161/01.CIR.0000052939.59093.45
  16. Kokita N., Hara A., Abiko Y., Arakawa J., Hashizume H., Namiki A. Propofol improves functional and metabolic recovery in ischemic reperfused isolated rat hearts. Anesth. Analg. 1998; 86 (2): 252–8.
  17. Murphy М.P., Smith R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Ann. Rev. Pharmacol. Toxicol. 2007; 47: 629–56. DOI: 10.1146/annurev.pharmtox.47.120505.105110
  18. Andrews D.T., Sutherland J., Dawson P., Royse A.G., Royse C.F. L-arginine cardioplegia reduces oxidative stress and preserves diastolic function in patients with low ejection fraction undergoing coronary artery surgery. Anaesth. Intens. Care. 2012; 40 (1): 99–106.
  19. Green T.R., Bennett I.S.R., Nelson V.M. Specificity and properties of propofol as an antioxidant free radical scavenger. Toxicol. Appl. Pharmacol. 1994; 129 (1): 163–9. DOI: 10.1006/taap.1994.1240
  20. Cavalca V., Tremoli E., Porro B., Veglia F., Myasoedova V., Squellerio I. et al. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences. Interact. CardioVasc. Thorac. Surg. 2013; 17 (6): 923–30. DOI: 10.1093/icvts/ivt386
  21. Prabhu A., Sujatha D.I., Kanagarajan N., Vijayalakshmi M.A., Ninan B. Effect of N-acetylcysteine in attenuating ischemic reperfusion injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Ann. Vasc. Surg. 2009; 23 (5): 645–51. DOI: 10.1016/j.avsg.2008.12.005
  22. Orhan G., Yapici N., Yuksel M., Sahin S.A., Süha Y.Z., Aykac S., Aykut A. Effects of N-acetylcysteine on myocardial ischemia-reperfusion injury in bypass surgery. Heart Vess. 2006; 21 (1): 42–7. DOI: 10.1007/s00380- 005-0873-1
  23. Ohsawa I., Ishikawa M., Takahashi K., Watanabe M., Nishimaki K., Yamagata K. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007; 13: 688–94. DOI: 10.1038/nm1577
  24. Eddleston J.M., Sharer N.M. Antioxydant therapy in critical illness. Yearbook of intensive care and emergency medicine. 1996: 96–104.
  25. Ohta S. Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 2011; 17 (22): 2241–52. DOI: 10.2174/138161211797052664
  26. Suleiman M.S., Zacharowski K., Angelini G.D. Inflammatory response and cardioprotection during openheart surgery: the importance of anaesthetics. Brit. J. Pharmacol. 2008; 53 (1): 21–33. DOI: 10.1038/sj.bjp.0707526
  27. Thygesen K., Alpert J.S., Jaffe A.S., Simoons M.L., Chaitman B.R., White H.D. et al. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012; 16: 1581–98. DOI: 10.1016/j.jacc.2012.08.001
  28. Davies M.G., Fulton G.J., Huynh T.T., Barber L., Svendsen E., Hagen P.O. Combination therapy of cholesterol reduction and L-arginine supplementation controls accelerated vein graft atheroma. Ann. Vasc. Surg. 1999; 13: 484–93. DOI: 10.1007/s100169900288
  29. Hamon M., Vallet B., Bauters B., Wernert N., McFadden E.P., Lablanche J.M. et al. Long-term oral administration of L-arginine reduces intimal thickening and enhances neoendothelium-dependent acetylcholineinduced relaxation after arterial injury. Circulation. 1994; 90: 1357–62.
  30. Sano M., Suzuki M., Homma K., Hayashida K., Tamura T., Matsuoka T. et al. Promising novel therapy with hydrogen gas for emergency and critical care medicine. Acute Med. Surg. 2018; 5 (2): 113–8. DOI:10.1002/ ams2.320
  31. Katsumata Y., Sano F., Abe T., Tamura T., Fujisawa T. et al. The effects of hydrogen gas inhalation on adverse left ventricular remodeling after percutaneous coronary intervention for ST-elevated myocardial infarction – first pilot study in humans. Circ. J. 2017; 81: 940–7. DOI: 10.1253/circj.CJ-17-0105
  32. Herbertson M. Recombinant activated factor VII in cardiac surgery. Blood Coagul. Fibrinolysis. 2004; 15 (Suppl. 1): S31–2.
  33. Fukuda K., Asoh S., Ishikawa M., Yamamoto Y., Ohsawa I., Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem. Biophys Res. Commun. 2007; 28: 670–4. DOI: 10.1016/j.bbrc.2007.07.088
  34. Nikao A., Kaczorowski D.J., Wang Y., Cardinal J.S., Buchholz B.M., Sugimoto R. et al. Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both. J. Heart Lung. Transplant. 2010; 25: 544–53. DOI: 10.1016/j.healun. 2009.10.011
  35. Buchholz B.M., Kaczorowski D.J., Sugimoto R., Yang R., Wang Y., Billiar T.R. et al. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am. J. Transplant. 2008; 8: 2015–24. DOI: 10.1111/j.1600-6143.2008.02359.x
  36. Hayashida K., Sano M., Ohsawa I., Shinmura K., Tamaki K., Kimura K. et al. Inhalation of hydrogengas reduces infarct size in therat model of myocardial ischemiareperfusion injury. Biochem. Biophys. Res. Commun. 2008; 373: 30–5. DOI: 10.1016/j.bbrc.2008.05.165
  37. Nagata K., Nakashima-Kamimura N., Micami T., Ohsawa I., Ohta S. et al. Consumption of molecular 292 Reviews Clinical Physiology of Circulation. 2020; 17 (4). DOI: 10.24022/1814-6910-2020-17-4-284-293 hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology. 2009; 34: 501–8. DOI: 10.1038/npp.2008.95
  38. Nakashima-Kamimura N., Mori T., Ohsawa I., Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by anti-cancer drug cisplantin without compromising anti-tumor activity in mice. Cancer. Chemother. Pharmacol. 2009; 64: 753–61. DOI: 10.1007/s00280- 008-0924-2
  39. Cardinal J.S., Zhan J., Wang Y., Sugimoto R., Tsung A., McCurry K.R. et al. Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int. 2010; 77: 101–9. DOI: 10.1038/ki.2009.421
  40. Fujita K., Seike T., Yutsudo N., Ohno M., Yamada H., Yamaguchi H. et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. PLoS ONE. 2009; 4: e7247. DOI: 10.1371/journal.pone.0007247
  41. Kang K.M., Kang Y.N., Choi I.B., Yeunhwa Gu, Kawamura T., Toyoda Yo, Atsunori N. Effects of drinking hydrogenrich water on the quality of life of patients treated with radiotherapy for liver tumors. Med. Gas. Res. 2011; 1 (1): 11. DOI: 10.1186/2045-9912-1-11
  42. Sakai T., Sato B., Hara K., Hara Y., Naritomi Y., Koyanagi S. et al. Consumption of water containingover 3,5 mg of dissolved hydrogen could improve vascular endothelial function. Vas. Health. Risk. Manage. 2014; 10: 591–7. DOI: 10.2147/VHRM.S68844
  43. Ono H., Nishijima Y., Adachi N., Tachibana S., Chitoku S., Mukaihara S. et al. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med. Gas. Research. 2011; 1: 12–20. DOI: 10.1186/ 2045-9912-1-12
  44. Yoritaka A., Takanashi M., Hirayama M., Nakahara T., Ohta S., Hattori N. Pilot study of H2 therapy in Parkinson's disease. A randomized double-blind placebo-controlled trial. Movement Disordwrs. 2013; 28 (6): 836–9. DOI: 10.1186/s12883-016-0589-0
  45. Ono H., Nishijima Y., Adachi N., Sakamato M., Kudo Y., Nakazawa J. et al. Hydrogen (H2) treatment for acute erythematous skin disease. A report of 4 patients with safety date and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med. Gas. Res. 2012; 2: 14. DOI: 10.1186/2045-9912-2-14
  46. Cai J.M., Kang Z.M., Liu K., Liu W.W., Li R.P. et al. Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain. Res. 2009; 1256: 129–37.
  47. Chen X., Liu Q., Wang D., Fend S., Zhao Y., Shi Y. et al. Protective effects of hydrogen-rich saline on rats with smoke inhalation injury. Oxid. Med. Cell. Longev. 2015; 2015. DOI: 10.1155/2015/106836

About Authors

  • Yuriy D. Brichkin, Dr. Med. Sc., Anesthesiologist; ORCID
  • Evgeniy V. Taranov, Anesthesiologist; ORCID
  • Sergey A. Fedorov, Cand. Med. Sc., Cardiovascular Surgeon; ORCID
  • Aleksandr P. Medvedev, Dr. Med. Sc., Professor of Chair of Hospital Surgery named after B.A. Korolev, Cardiovascular Surgeon; ORCID

 If you found mistakes, select text and press Alt+A