Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, директор ФГБУ «НМИЦССХ им. А.Н. Бакулева» МЗ РФ

Патофизиологические аспекты коморбидности факторов риска атеросклероза и саркопении

Авторы: Масенко В.Л., Коков А.Н., Семенов С.Е., Кривошапова К.Е., Барбараш О.Л.

Организация:
ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Сосновый б-р, 6, Кемерово, 650002, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2020-17-4-245-256

УДК: 616.13-004.6+616-092

Библиографическая ссылка: Клиническая физиология кровообращения. 2020; 4 (17): 245-256

Цитировать как: Масенко В.Л., Коков А.Н., Семенов С.Е., Кривошапова К.Е., Барбараш О.Л.. Патофизиологические аспекты коморбидности факторов риска атеросклероза и саркопении. Клиническая физиология кровообращения. 2020; 4 (17): 245-256. DOI: 10.24022/1814-6910-2020-17-4-245-256

Ключевые слова: атеросклероз, саркопения, факторы риска, коморбидность

Поступила / Принята к печати:  25.06.2020 / 10.07.2020

Полнотекстовая версия:
Оформить подписку 🔒

Аннотация

Сердечно-сосудистые заболевания (ССЗ) с прогрессирующим течением атеросклероза у пожилых пациентов отягощаются целым рядом возрастассоциированных состояний, одним из которых является саркопения – прогрессирующее снижение количества и качества поперечно-полосатой мускулатуры. Изучение проблемы саркопении у больных ССЗ вызывает в научном сообществе дискуссию, касающуюся вопросов общности патогенеза атеросклеротического поражения и прогрессирующей потери мышечной массы с позиции коморбидности, объединяемой общими звеньями патогенеза этих двух процессов. С использованием современных данных литературы в обзоре проведен анализ основных модифицируемых факторов риска атеросклероза и саркопении с точки зрения патофизиологических механизмов их влияния на артериальное русло и мышечную ткань, проанализированы исторические аспекты и современные исследования, посвященные изучению общих звеньев атерогенеза и протеолиза. Определено, что рассматриваемые в данном обзоре факторы риска, такие как курение, ожирение, нарушение углеводного обмена, артериальная гипертония, безусловно, имеют самостоятельные патогенетические пути реализации неблагоприятного влияния, но единым связующим звеном для них является воспалительная реакция, определяющая взаимное потенцирование и коморбидность саркопении и атеросклероза.

Литература

  1. Демографический ежегодник России. 2019: Статистический сборник. M.: Росстат; 2019.
  2. Motyer R., Asadi H., Thornton J., Nicholson P., Kok H. Current evidence for endovascular therapy in stroke and remaining uncertainties. J. Intern. Med. 2018; 293: 2–15. DOI: 10.1111/joim.12653
  3. Cruz-Jentoft A., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm O. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (1): 16–31. DOI: 10.1093/ageing/afy169
  4. Fuggle N., Shaw S., Dennison E., Cooper C. Sarcopenia. Best Pract. Res. Clin. Rheumatol. 2017; 31 (2): 218–42. DOI: 10.1016/j.berh.2017.11.007
  5. Kalinkovich A., Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017; 35: 200–21. DOI: 10.1016/j.arr.2016.09.008
  6. VonHaehling S., Morley J., Anker S. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J. Cach. Sarc. Musc. 2010; 1 (2): 129–33. DOI: 10.1007/s13539-010-0014-2
  7. Cruz-Jentoft A., Landi F., Schneider S., Zuúniga C., Arai H., Boirie Y. et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014; 43 (6): 748–59. DOI: 10.1093/ageing/afu115
  8. Богат С.В. Распространенность саркопении у пациентов старших возрастных групп. Геронтология. 2014; 2 (3): 305–10.
  9. Бочарова К.А., Герасименко А.В., Жабоева С.Л. Изучение распространенности саркопении у пациентов в системе первичной медико-санитарной помощи. Современные проблемы науки и образования. 2014; 6: 1036–43.
  10. Deijle I., Van Schaik S., Van Wegen E., Weinstein H., Kwakkel G., Van den Berg-Vos R. Lifestyle interventions to prevent cardiovascular events after stroke and transient ischemic attack: systematic review and metaanalysis. Stroke. 2017; 48 (1): 174–9. DOI: 10.1161/STROKEAHA.116.013794
  11. Dennison E., Sayer A., Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat. Rev. Rheumatol. 2017; 13 (6): 340–7. DOI: 10.1038/nrrheum.2017.60
  12. Европейские рекомендации по профилактике сердечно-сосудистых заболеваний в клинической практике (Пересмотр 2016). Российский кардиологический журнал. 2017; 6 (146): 7–85. DOI: 10.15829/ 1560-4071-2017-6-7-85
  13. Celermajer D., Sorensen K., Gooch V., Spiegelhalter D., Miller O., Sullivan I. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992; 340 (8828): 1111–5. DOI: 10.1016/0140-6736 (92)93147-f
  14. Conklin D., Schick S., Blaha M., Carll A., DeFilippis A., Ganz P. et al. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am. J. Physiol. Heart Circ. Physiol. 2019; 316 (4): 801–27. DOI: 10.1152/ajpheart.00591.2018
  15. Ishizaka N., Ishizaka Y., Toda E., Hashimoto H., Nagai R., Yamakado M. Association between white blood cell count and carotid arteriosclerosis in Japanese smokers. Atherosclerosis. 2004; 175 (1): 95–100. DOI: 10.1016/j.atherosclerosis.2004.03.004
  16. Barbieri S., Zacchi E., Amadio P., Gianellini S., Mussoni L., Weksler B. Cytokines present in smokers’ serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc. Res. 2011; 90 (3): 475–83. DOI: 10.1093/cvr/cvr032
  17. Arunachalam G., Yao H., Sundar I., Caito S., Rahman I. SIRT1 regulates oxidant and cigarette smokeinduced eNOS acetylation in endothelial cells: role of resveratrol. Biochem. Biophys. Res. Commun. 2010; 393 (1): 66–72. DOI: 10.1016/j.bbrc.2010.01.080
  18. Bernhard D., Csordas A., Henderson B., Rossmann A., Kind M., Wick G. Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. FASEB J. 2005; 19 (9): 1096–107. DOI: 10.1096/fj.04-3192com
  19. Nordskog B., Blixt A., Morgan W., Fields W., Hellmann G. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate. Cardiovasc. Toxicol. 2003; 3 (2): 101–17. DOI: 10.1385/ct: 3: 2: 101
  20. Stenholm S., Tiainen K., Rantanen T., Sainio P., Heliovaara M., Impivaara O. et al. Long-term determinants of muscle strength decline: prospective evidence from the 22-year follow-up survey. J. Am. Geriatr. Soc. 2012; 60 (1): 77–85. DOI: 10.1111/j.1532-5415.2011.03779.x
  21. Foletta V., White L., Larsen A., Léger B., Russell A. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011; 461 (3): 325–35. DOI: 10.1007/s00424-010-0919-9
  22. Lipecz A., Miller L., Kovacs I., Czakó C., Csipo T., Baffi J. et al. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. Geroscience. 2019; 41 (6): 813–45. DOI: 10.1007/s11357-019-00138-3
  23. Sukhanov S., Semprun-Prieto L., Yoshida T., Tabony A., Higashi Y., Galvez S. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci. 2011; 342 (2): 143–7. DOI: 10.1097/MAJ.0b013e318222e620
  24. Kent-Braun J. Skeletal muscle fatigue in old age: whose advantage? Exerc. Sport Sci. Rev. 2009; 37 (1): 3–9. DOI: 10.1097/JES.0b013e318190ea2e
  25. Hubert A., Seitz A., Pereyra V., Bekeredjian R., Sechtem U., Ong P. Coronary artery spasm: the interplay between endothelial dysfunction and vascular smooth muscle cell hyperreactivity. Eur. Cardiol. 2020; 15: e12. DOI: 10.15420/ecr.2019.20
  26. Han K., Park Y.-M., Kwon H.-S., Ko S.-H., Lee S.-H., Hyeon Woo Yim et al. Sarcopenia as a determinant of blood pressure in older koreans: findings from the Korea National Health and Nutrition Examination Surveys (KNHANES) 2008–2010. PLoS One. 2014; 9 (1): e86902. DOI: 10.1371/journal.pone.0086902
  27. Ochi M., Kohara K., Tabara Y., Kido Y., Uetani E., Ochi N. et al. Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis. 2010; 212 (1): 327–32. DOI: 10.1016/j.atherosclerosis.2010.05.026
  28. Coelho-Junior H., Gambassi B., Irigoyen M., Gonc, alves I., Oliveira P., Schwingel P. et al. Hypertension, sarcopenia, and global cognitivef in community-dwelling older women: a preliminary study. J. Aging Res. 2018; 2018: 9758040. DOI: 10.1155/2018/9758040
  29. Fiuza-Luces C., Santos-Lozano A., Joyner M., Carrera-Bastos P., Picazo O., Zugaza J. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018; 15 (12): 731–43. DOI: 10.1038/s41569-018-0065-1
  30. Abramson J., Weintraub W., Vaccarino V. Association between pulse pressure and C-reactive protein among apparently healthy US adults. Hypertension. 2002; 39 (2): 197–202. DOI: 10.1161/hy0202.104270
  31. Amar J., Ruidavets J., Peyrieux J., Mallion J., Ferrieres J., Safar M. et al. C-reactive protein elevation predicts pulse pressure reduction in hypertensive subjects. Hypertension. 2005; 46: 151–5. DOI: 10.1161/01.HYP. 0000171165.80268.be
  32. Korakas E., Dimitriadis G., Raptis A., Lambadiari V. Dietary composition and cardiovascular risk: a mediator or a bystander? Nutrients. 2018; 10 (12): 1912. DOI: 10.3390/nu10121912
  33. Коков А.Н., Брель Н.К., Масенко В.Л., Груздева О.В., Каретникова В.Н., Кашталап В.В., Барбараш О.Л. Количественная оценка висцерального жирового депо у больных ишемической болезнью сердца с использованием современных томографических методик. Комплексные проблемы сердечнососудистых заболеваний. 2017; 6 (3): 113–9. DOI: 10.17802/2306-1278-2017-6-3-113-119
  34. Haybar H., Shahrabi S., Rezaeeyan H., Shirzad R., Saki N. Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc. Toxicol. 2019; 19 (1): 13–22. DOI: 10.1007/s12012-018-9493-8
  35. Silswal N., Singh A., Aruna B., Mukhopadhyay S., Ghosh S., Ehtesham N. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappa-B dependent pathway. Biochem. Biophys. Res. Commun. 2005; 334: 1092–101. DOI: 10.1016/j.bbrc.2005.06.202
  36. Shimabukuro M. Leptin resistance and lipolysis of white adipose tissue: an implication to ectopic fat disposition and its consequences. J. Atheroscler. Thromb. 2017; 24: 1088–9. DOI: 10.5551/jat.ED083
  37. Consitt L., Clark B. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J. Frailty Aging. 2018; 7: 21–7. DOI: 10.14283/jfa.2017.33
  38. Colaianni G., Cinti S., Colucci S. Grano M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017; 1402 (1): 5–9. DOI: 10.1111/nyas.13345
  39. Zhao W., Rasheed A., Tikkanen E., Lee J., Butterworth A., Howson J. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017; 49 (10): 1450–7. DOI: 10.1038/ng.3943
  40. Jia G., DeMarco V., Sowers J. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 2016; 12 (3): 144–53. DOI: 10.1038/nrendo.2015.216
  41. Jia G., Connell A., Sowers J. Diabetic cardiomyopathy: a hyperglycaemia and insulin-resistance-induced heart disease. Diabetologia. 2018; 61 (1): 21–8. DOI: 10.1007/s00125-017-4390-4
  42. Wolfe R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006; 84 (3): 475–82. DOI: 10.1093/ajcn/84.3.475
  43. Abdulla H., Smith K., Atherton P., Idris I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia. 2016; 59 (1): 44–55. DOI: 10.1007/s00125-015-3751-0
  44. Rasmussen B., Fujita S., Wolfe R., Mittendorfer B., Roy M., Rowe V. et al. Insulin resistance of muscle protein metabolism in aging. Faseb. J. 2006; 20 (6): 768–9. DOI: 10.1096/fj.05-4607fje
  45. Consitt L., Dudley C., Saxena G. Impact of endurance and resistance training on skeletal muscle glucose metabolism in older adults. Nutrients. 2019; 11 (11): 2636. DOI: 10.3390/nu11112636
  46. Hong S., Choi K. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int. J. Mol. Sci. 2020; 21 (2): 494. DOI: 10.3390/ijms21020494
  47. Stinkens R., Goossens G., Jocken J., Blaak E. Targeting fatty acid metabolism to improve glucose metabolism. Obes. Rev. 2015; 16 (9): 715–57. DOI: 10.1111/obr.12298
  48. Claflin D., Jackson M., Brooks S. Age affects the contraction-induced mitochondrial redox response in skeletal muscle. Front. Physiol. 2015; 6: 21. DOI: 10.3389/fphys.2015.00021
  49. Kim Y., Kim C., Joe Y., Chung H., Ha T., Yu R. Quercetin reduces tumor necrosis factor alpha induced muscle atrophy by upregulation of Heme Oxygenase-1. J. Med. Food. 2018; 21: 551–9. DOI: 10.1089/jmf.2017.4108
  50. Yang J., Cao R., Gao R., Mi Q., Dai Q., Zhu F. Physical exercise is a potential "medicine" for atherosclerosis. Adv. Exp. Med. Biol. 2017; 999: 269–86. DOI: 10.1007/978-981-10-4307-9_15
  51. Bjornstad H., Bruvik J., Bjornstad A., Hjellestad B., Damas J., Aukrust P. Exercise training decreases plasma levels of soluble CD40 ligand and P-selectin in patients with chronic heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 2008; 15 (1): 43–8. DOI: 10.1097/HJR.0b013e3281ca7023
  52. White J., Puppa M., Sato S., Gao S., Price R., Baynes J. et al. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet. Muscle. 2012; 2: 14. DOI: 10.1186/2044-5040-2-14
  53. Wilson D., Jackson T., Sapey E., Lord J. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res. Rev. 2017; 36: 1–10. DOI: 10.1016/j.arr.2017.01.006
  54. Franceschi C., Bonafè B., Valensin S., Olivieri F., DeLuca M., Ottaviani E. et al. Inflammaging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 2000; 908: 244–54. DOI: 10.1111/j.1749-6632.2000.tb06651.x
  55. Franceschi C., Garagnani P., Vitale G., Capri M., Salvioli S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 2017; 28 (3): 199–212. DOI: 10.1016/j.tem.2016.09.005
  56. Ferrucci L., Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018; 15 (9): 505–22. DOI: 10.1038/s41569-018-0064-2
  57. Narayan V., Thompson E., Demissei B., Ho J., Januzzi J., Ky B. Mechanistic biomarkers informative of both cancer and cardiovascular disease: JACC state-of-theart review. J. Am. Coll. Cardiol. 2020; 75 (21): 2726–37. DOI: 10.1016/j.jacc.2020.03.067
  58. Wang C., Lorenzo C., Habib S., Jo B., Espinoza S. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J. Diabet. Complicat. 2017; 31 (4): 679–86. DOI: 10.1016/j.jdiacomp.2017.01.013
****
  1. The demographic yearbook of Russia. 2019: Statistical handbook. Moscow: Rosstat; 2019 (in Russ.).
  2. Motyer R., Asadi H., Thornton J., Nicholson P., Kok H. Current evidence for endovascular therapy in stroke and remaining uncertainties. J. Intern. Med. 2018; 293: 2–15. DOI: 10.1111/joim.12653
  3. Cruz-Jentoft A., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm O. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (1): 16–31. DOI: 10.1093/ageing/afy169
  4. Fuggle N., Shaw S., Dennison E., Cooper C. Sarcopenia. Best Pract. Res. Clin. Rheumatol. 2017; 31 (2): 218–42. DOI: 10.1016/j.berh.2017.11.007
  5. Kalinkovich A., Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017; 35: 200–21. DOI: 10.1016/j.arr.2016.09.008
  6. VonHaehling S., Morley J., Anker S. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J. Cach. Sarc. Musc. 2010; 1 (2): 129–33. DOI: 10.1007/s13539-010-0014-2
  7. Cruz-Jentoft A., Landi F., Schneider S., Zuúniga C., Arai H., Boirie Y. et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014; 43 (6): 748–59. DOI: 10.1093/ageing/afu115
  8. Bogat S.V. Prevalence of sarcopenia in patients over age group. Gerontology. 2014; 2 (3): 305–10 (in Russ.)
  9. Bocharova K.A., Gerasimenko A.V., Zhaboeva S.L. Studying of prevalence of sarkopenia at patients in outpatient health care system. Modern Problems of Science and Education. 2014; 6: 1036–43 (in Russ.)
  10. Deijle I., Van Schaik S., Van Wegen E., Weinstein H., Kwakkel G., Van den Berg-Vos R. Lifestyle interventions to prevent cardiovascular events after stroke and transient ischemic attack: systematic review and metaanalysis. Stroke. 2017; 48 (1): 174–9. DOI: 10.1161/STROKEAHA.116.013794
  11. Dennison E., Sayer A., Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat. Rev. Rheumatol. 2017; 13 (6): 340–7. DOI: 10.1038/nrrheum.2017.60
  12. 2016 European guidelines on cardiovascular disease prevention in clinical practice. Russian Journal of Cardiology. 2017; 6 (146): 7–85 (in Russ.). DOI: 10.15829/1560-4071-2017-6-7-85]
  13. Celermajer D., Sorensen K., Gooch V., Spiegelhalter D., Miller O., Sullivan I. et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992; 340 (8828): 1111–5. DOI: 10.1016/0140-6736 (92)93147-f
  14. Conklin D., Schick S., Blaha M., Carll A., DeFilippis A., Ganz P. et al. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am. J. Physiol. Heart Circ. Physiol. 2019; 316 (4): 801–27. DOI: 10.1152/ajpheart.00591.2018
  15. Ishizaka N., Ishizaka Y., Toda E., Hashimoto H., Nagai R., Yamakado M. Association between white blood cell count and carotid arteriosclerosis in Japanese smokers. Atherosclerosis. 2004; 175 (1): 95–100. DOI: 10.1016/j.atherosclerosis.2004.03.004
  16. Barbieri S., Zacchi E., Amadio P., Gianellini S., Mussoni L., Weksler B. Cytokines present in smokers’ serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc. Res. 2011; 90 (3): 475–83. DOI: 10.1093/cvr/cvr032
  17. Arunachalam G., Yao H., Sundar I., Caito S., Rahman I. SIRT1 regulates oxidant and cigarette smokeinduced eNOS acetylation in endothelial cells: role of resveratrol. Biochem. Biophys. Res. Commun. 2010; 393 (1): 66–72. DOI: 10.1016/j.bbrc.2010.01.080
  18. Bernhard D., Csordas A., Henderson B., Rossmann A., Kind M., Wick G. Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. FASEB J. 2005; 19 (9): 1096–107. DOI: 10.1096/fj.04-3192com
  19. Nordskog B., Blixt A., Morgan W., Fields W., Hellmann G. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate. Cardiovasc. Toxicol. 2003; 3 (2): 101–17. DOI: 10.1385/ct: 3: 2: 101
  20. Stenholm S., Tiainen K., Rantanen T., Sainio P., Heliovaara M., Impivaara O. et al. Long-term determinants of muscle strength decline: prospective evidence from the 22-year follow-up survey. J. Am. Geriatr. Soc. 2012; 60 (1): 77–85. DOI: 10.1111/j.1532-5415.2011.03779.x
  21. Foletta V., White L., Larsen A., Léger B., Russell A. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011; 461 (3): 325–35. DOI: 10.1007/s00424-010-0919-9
  22. Lipecz A., Miller L., Kovacs I., Czakó C., Csipo T., Baffi J. et al. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. Geroscience. 2019; 41 (6): 813–45. DOI: 10.1007/s11357-019-00138-3
  23. Sukhanov S., Semprun-Prieto L., Yoshida T., Tabony A., Higashi Y., Galvez S. Angiotensin II, oxidative stress and skeletal muscle wasting. Am. J. Med. Sci. 2011; 342 (2): 143–7. DOI: 10.1097/MAJ.0b013e318222e620
  24. Kent-Braun J. Skeletal muscle fatigue in old age: whose advantage? Exerc. Sport Sci. Rev. 2009; 37 (1): 3–9. DOI: 10.1097/JES.0b013e318190ea2e
  25. Hubert A., Seitz A., Pereyra V., Bekeredjian R., Sechtem U., Ong P. Coronary artery spasm: the interplay between endothelial dysfunction and vascular smooth muscle cell hyperreactivity. Eur. Cardiol. 2020; 15: e12. DOI: 10.15420/ecr.2019.20
  26. Han K., Park Y.-M., Kwon H.-S., Ko S.-H., Lee S.-H., Hyeon Woo Yim et al. Sarcopenia as a determinant of blood pressure in older koreans: findings from the Korea National Health and Nutrition Examination Surveys (KNHANES) 2008–2010. PLoS One. 2014; 9 (1): e86902. DOI: 10.1371/journal.pone.0086902
  27. Ochi M., Kohara K., Tabara Y., Kido Y., Uetani E., Ochi N. et al. Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis. 2010; 212 (1): 327–32. DOI: 10.1016/j.atherosclerosis.2010.05.026
  28. Coelho-Junior H., Gambassi B., Irigoyen M., Gonc, alves I., Oliveira P., Schwingel P. et al. Hypertension, sarcopenia, and global cognitivef in community-dwelling older women: a preliminary study. J. Aging Res. 2018; 2018: 9758040. DOI: 10.1155/2018/9758040
  29. Fiuza-Luces C., Santos-Lozano A., Joyner M., Carrera-Bastos P., Picazo O., Zugaza J. et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018; 15 (12): 731–43. DOI: 10.1038/s41569-018-0065-1
  30. Abramson J., Weintraub W., Vaccarino V. Association between pulse pressure and C-reactive protein among apparently healthy US adults. Hypertension. 2002; 39 (2): 197–202. DOI: 10.1161/hy0202.104270
  31. Amar J., Ruidavets J., Peyrieux J., Mallion J., Ferrieres J., Safar M. et al. C-reactive protein elevation predicts pulse pressure reduction in hypertensive subjects. Hypertension. 2005; 46: 151–5. DOI: 10.1161/01.HYP. 0000171165.80268.be
  32. Korakas E., Dimitriadis G., Raptis A., Lambadiari V. Dietary composition and cardiovascular risk: a mediator or a bystander? Nutrients. 2018; 10 (12): 1912. DOI: 10.3390/nu10121912
  33. Kokov A.N., Brel N.K., Masenko V.L., Gruzdeva O.V., Karetnikova V.N., Kashtalap V.V., Barbarash O.L. Quantitative assessment of visceral adipose depot in patients with ischemic heart disease by using of modern tomographic methods. Complex Issues of Cardiovascular Diseases. 2017; 6 (3): 113–9 (in Russ.). DOI: 10.17802/ 2306-1278-2017-6-3-113-119
  34. Haybar H., Shahrabi S., Rezaeeyan H., Shirzad R., Saki N. Endothelial cells: from dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc. Toxicol. 2019; 19 (1): 13–22. DOI: 10.1007/s12012-018-9493-8
  35. Silswal N., Singh A., Aruna B., Mukhopadhyay S., Ghosh S., Ehtesham N. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappa-B dependent pathway. Biochem. Biophys. Res. Commun. 2005; 334: 1092–101. DOI: 10.1016/j.bbrc.2005.06.202
  36. Shimabukuro M. Leptin resistance and lipolysis of white adipose tissue: an implication to ectopic fat disposition and its consequences. J. Atheroscler. Thromb. 2017; 24: 1088–9. DOI: 10.5551/jat.ED083
  37. Consitt L., Clark B. The vicious cycle of myostatin signaling in sarcopenic obesity: myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J. Frailty Aging. 2018; 7: 21–7. DOI: 10.14283/jfa.2017.33
  38. Colaianni G., Cinti S., Colucci S. Grano M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017; 1402 (1): 5–9. DOI: 10.1111/nyas.13345
  39. Zhao W., Rasheed A., Tikkanen E., Lee J., Butterworth A., Howson J. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017; 49 (10): 1450–7. DOI: 10.1038/ng.3943
  40. Jia G., DeMarco V., Sowers J. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 2016; 12 (3): 144–53. DOI: 10.1038/nrendo.2015.216
  41. Jia G., Connell A., Sowers J. Diabetic cardiomyopathy: a hyperglycaemia and insulin-resistance-induced heart disease. Diabetologia. 2018; 61 (1): 21–8. DOI: 10.1007/s00125-017-4390-4
  42. Wolfe R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006; 84 (3): 475–82. DOI: 10.1093/ajcn/84.3.475
  43. Abdulla H., Smith K., Atherton P., Idris I. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia. 2016; 59 (1): 44–55. DOI: 10.1007/s00125-015-3751-0
  44. Rasmussen B., Fujita S., Wolfe R., Mittendorfer B., Roy M., Rowe V. et al. Insulin resistance of muscle protein metabolism in aging. Faseb. J. 2006; 20 (6): 768–9. DOI: 10.1096/fj.05-4607fje
  45. Consitt L., Dudley C., Saxena G. Impact of endurance and resistance training on skeletal muscle glucose metabolism in older adults. Nutrients. 2019; 11 (11): 2636. DOI: 10.3390/nu11112636
  46. Hong S., Choi K. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int. J. Mol. Sci. 2020; 21 (2): 494. DOI: 10.3390/ijms21020494
  47. Stinkens R., Goossens G., Jocken J., Blaak E. Targeting fatty acid metabolism to improve glucose metabolism. Obes. Rev. 2015; 16 (9): 715–57. DOI: 10.1111/obr.12298
  48. Claflin D., Jackson M., Brooks S. Age affects the contraction-induced mitochondrial redox response in skeletal muscle. Front. Physiol. 2015; 6: 21. DOI: 10.3389/fphys.2015.00021
  49. Kim Y., Kim C., Joe Y., Chung H., Ha T., Yu R. Quercetin reduces tumor necrosis factor alpha induced muscle atrophy by upregulation of Heme Oxygenase-1. J. Med. Food. 2018; 21: 551–9. DOI: 10.1089/jmf.2017.4108
  50. Yang J., Cao R., Gao R., Mi Q., Dai Q., Zhu F. Physical exercise is a potential "medicine" for atherosclerosis. Adv. Exp. Med. Biol. 2017; 999: 269–86. DOI: 10.1007/978-981-10-4307-9_15
  51. Bjornstad H., Bruvik J., Bjornstad A., Hjellestad B., Damas J., Aukrust P. Exercise training decreases plasma levels of soluble CD40 ligand and P-selectin in patients with chronic heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 2008; 15 (1): 43–8. DOI: 10.1097/HJR.0b013e3281ca7023
  52. White J., Puppa M., Sato S., Gao S., Price R., Baynes J. et al. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet. Muscle. 2012; 2: 14. DOI: 10.1186/2044-5040-2-14
  53. Wilson D., Jackson T., Sapey E., Lord J. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res. Rev. 2017; 36: 1–10. DOI: 10.1016/j.arr.2017.01.006
  54. Franceschi C., Bonafè B., Valensin S., Olivieri F., DeLuca M., Ottaviani E. et al. Inflammaging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 2000; 908: 244–54. DOI: 10.1111/j.1749-6632.2000.tb06651.x
  55. Franceschi C., Garagnani P., Vitale G., Capri M., Salvioli S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 2017; 28 (3): 199–212. DOI: 10.1016/j.tem.2016.09.005
  56. Ferrucci L., Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018; 15 (9): 505–22. DOI: 10.1038/s41569-018-0064-2
  57. Narayan V., Thompson E., Demissei B., Ho J., Januzzi J., Ky B. Mechanistic biomarkers informative of both cancer and cardiovascular disease: JACC state-of-theart review. J. Am. Coll. Cardiol. 2020; 75 (21): 2726–37. DOI: 10.1016/j.jacc.2020.03.067
  58. Wang C., Lorenzo C., Habib S., Jo B., Espinoza S. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J. Diabet. Complicat. 2017; 31 (4): 679–86. DOI: 10.1016/j.jdiacomp.2017.01.013

Об авторах

  • Масенко Владислава Леонидовна, канд. мед. наук, науч. сотр.; ORCID
  • Коков Александр Николаевич, канд. мед. наук, заведующий лабораторией; ORCID
  • Семенов Станислав Евгеньевич, доктор мед. наук, вед. науч. сотр.; ORCID
  • Кривошапова Кристина Евгеньевна, канд. мед. наук, науч. сотр.; ORCID
  • Барбараш Ольга Леонидовна, доктор мед. наук, профессор, чл.-корр. РАН, директор; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A