Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Чрескожная стимуляция аурикулярной ветви блуждающего нерва: потенциал метода лечения различных сердечно-сосудистых заболеваний

Авторы: Шварц В.А., Сижажев Э.М.

Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России, Москва, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2023-20-1-5-15

УДК: 616.12-089.819.5

Библиографическая ссылка: Клиническая физиология кровообращения. 2023; 1 (20): 5-15

Цитировать как: Шварц В.А., Сижажев Э.М. . Чрескожная стимуляция аурикулярной ветви блуждающего нерва: потенциал метода лечения различных сердечно-сосудистых заболеваний. Клиническая физиология кровообращения. 2023; 1 (20): 5-15. DOI: 10.24022/1814-6910-2023-20-1-5-15

Ключевые слова: анатомия вагуса, физиология вагуса, чрескожная неинвазивная стимуляция вагуса, аурикулярная ветвь блуждающего нерва, ишемическая болезнь сердца, фибрилляция предсердий

Поступила / Принята к печати:  19.01.2023 / 15.03.2023

Полнотекстовая версия:
Оформить подписку 🔒

Аннотация

Представлен обзор современных исследований по изучению электрической стимуляции аурикулярной ветви блуждающего нерва. Описаны клинические предпосылки появления метода, анатомическое обоснование выбора данной зоны стимуляции, а также возможные физиологические механизмы, происходящие при стимуляции. Кроме того, приводятся некоторые современные экспериментальные исследования по применению чрескожной стимуляции вагуса при различных патологиях, в том числе при сердечно-сосудистых заболеваниях. Авторами также описаны наиболее часто встречающиеся в литературных источниках устройства для неинвазивной стимуляции вагуса (GammaCore®, Parasym™, Cerbomed NEMOS®, taVNS Stimulator by Soterix Medical) и приведены особенности их применения.
В настоящее время чрескожная стимуляция блуждающего нерва является перспективной, но малоизученной методикой, которая потенциально может быть альтернативным и безопасным вмешательством при широком спектре сердечно-сосудистых заболеваний. Поскольку проведенные на сегодняшний день исследования включают малое число участников, это затрудняет оценку клинической значимости метода. Для получения валидной научно-доказательной базы знаний о терапевтических эффектах стимуляции аурикулярной ветви блуждающего нерва на сердечно-сосудистую систему необходимы дальнейшие исследования с большой выборкой участников и последующим обобщением полученных данных в виде метаанализов.

Литература

  1. Prescott S.L., Liberles S.D. Internal senses of the vagus nerve. Neuron. 2022; 110 (4): 579–99. DOI: 10.1016/j.neuron.2021.12.020
  2. Ottaviani M.M., Macefield V.G. Structure and functions of the vagus nerve in mammals. Compr. Physiol. 2022; 12 (4): 3989-4037. DOI: 10.1002/cphy.c210042
  3. Kharbanda R.K., van der Does W.F.B., van Staveren L.N., Taverne Y.J.H.J., Bogers A.J.J.C., de Groot N.M.S. Vagus nerve stimulation and atrial fibrillation: revealing the paradox. Neuromodulation. 2022; 25 (3): 356–65. DOI: 10.1016/j.neurom.2022.01.008
  4. Asconapé J.J., Moore D.D., Zipes D.P., Hartman L.M., Duffell W.H.Jr. Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia. 1999; 40 (10): 1452–4. DOI: 10.1111/j.1528- 1157.1999.tb02019.x
  5. Liu A., Rong P., Gong L., Song L., Wang X., Li L. et al. Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med. Sci. Monit. 2018; 24: 8439–48. DOI: 10.12659/MSM.910689
  6. Rong P., Liu A., Zhang J., Wang Y., Yang A., Li L. et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin. Med. J. 2014; 127: 300–4.
  7. Fang J., Egorova N., Rong P. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 2017; 14: 105–11. DOI: 10.1016/j.nicl.2016.12.016
  8. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J. et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 2016; 195: 172–9. DOI: 10.1016/j.jad.2016.02.031
  9. Gaul C., Diener H.-C., Silver N., Magis D., Reuter U., Andersson A. et al. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia. 2016; 36: 534–46. DOI: 10.1177/0333102415607070
  10. Hyvärinen P., Yrttiaho S., Lehtimäki J., Ilmoniemi R.J., Mäkitie A., Ylikoski J. et al. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 2015; 36 (3): e76–e85. DOI: 10.1097/AUD.0000000000000123
  11. De Ferrari G.M., Crijns H.J., Borggrefe M., Milasinovic G., Smid J., Zabel M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 2011; 32 (7): 847–55. DOI: 10.1093/eurheartj/ehq391
  12. Павлюкова Е.Н., Кузьмичкина М.А., Афанасьев С.А., Карпов Р.С. Аурикулярная вагусная стимуляция в лечении больных с левожелудочковой дисфункцией. Клиническая медицина. 2013; 91 (7): 27–31.
  13. Афанасьев С.А., Павлюкова Е.Н., Кузьмичкина М.А., Анфиногенова Я.Д., Карпов Р.С. Изменение частоты сердечных сокращений после воздействия на ушную ветвь блуждающего нерва у больных хронической сердечной недостаточностью тяжелых функциональных классов. Физиология человека. 2016; 42 (4): 77–82. DOI: 10.7868/S0131164616030024
  14. Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A. et al. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Archiv. Psychiatry Clin. Neurosci. 2015; 265: 589–600. DOI: 10.1007/s00406-015-0618-9
  15. Keute M., Boehrer L., Ruhnau P., Heinze H.-J., Zaehle T. Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception. Front. Neurosci. 2019; 13: 227. DOI: 10.3389/fnins.2019.00227
  16. Драпкина О.М., Джиоева О.Н., Рогожкина Е.А., Шварц Е.Н., Киселев А.Р. Чрескожная неинвазивная вегетативная стимуляция: возможности и перспективы метода в практике специалистов по внутренним болезням. Комплексные проблемы сердечно-сосудистых заболеваний. 2022; 11 (4): 191–200. DOI: 10.17802/2306-1278-2022-11-4-191-200
  17. Киселев А.Р., Шварц Е.Н., Джиоева О.Н., Драпкина О.М. Физиологические основы коррекции ожирения при чрескожной стимуляции блуждающего нерва. Профилактическая медицина. 2022; 25 (10): 111–5. DOI: 10.17116/profmed202225101111
  18. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002; 1: 477–82. 19. Johnson R.L., Wilson C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018; 11: 203–13. DOI: 10.2147/JIR.S163248
  19. Fahy B.G. Intraoperative and perioperative complications with a vagus nerve stimulation device. J. Clin. Anesth. 2010; 22: 213–22. DOI: 10.1016/j.jclinane.2009.10.002
  20. Ginsberg L.E., Eicher S.A. Great auricular nerve: anatomy and imaging in a case of perineural tumor spread. Am. J. Neuroradiol. 2000; 21: 568–71.
  21. Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R.F., Papa M. et al. Current directions in the auricular vagus nerve stimulation I – a physiological perspective. Front. Neurosci. 2019; 13: 854. DOI: 10.3389/fnins.2019.00854
  22. Arnold F. Anatomische und physiologische Untersuchungen über das Auge des Menschen. Groos, Heidelberg Leipzig; 1832: VI–VII.
  23. Sherrington C.S. Experiments in examination of the peripheral distribution of the fibres of the posterior roots of some spinal nerves. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1898; 190: 45–186.
  24. Fay T. Observations and results from intracranial section of the glossopharyngeus and vagus nerves in man. J. Neurol. Psychopathol. 1927; 8: 110–23. 26. Peuker E.T., Filler T.J. The nerve supply of the human auricle. Clin. Anat. 2002; 15: 35–7.
  25. Kiyokawa J., Yamaguchi K., Okada R., Maehara T., Akita K. Origin, course and distribution of the nerves to the posterosuperior wall of the external acoustic meatus. Anat. Sci. Int. 2014; 89 (4): 238–45. DOI: 10.1007/s12565-014-0231-4
  26. Murray A.R., Atkinson L., Mahadi M.K., Deuchars S.A., Deuchars J. The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control. Auton. Neurosci. 2016; 199: 48–53.
  27. Badran B.W., Glusman C.E., Badran A.W., DeVries W.H., Borckhardt J.J., George M.S. et al. The physiological and neurobiological effects of transcutaneous auricular vagus nerve stimulation (taVNS). Brain. Stimul. 2017; 10: 378.
  28. Badran B.W., Dowdle L.T., Mithoefer O.J., LaBate N.T., Coatsworth J., Brown J.C. et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain. Stimul. 2018; 11: 947–8.
  29. Badran B.W., Jenkins D.D., DeVries W.H., Dancy M., Summers P.M., Mappin G.M. et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain. Stimul. 2018; 11: 492–500.
  30. Badran B.W., Mithoefer O.J., Summer C.E., LaBate N.T., Glusman C.E., Badran A.W. et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain. Stimul. 2018; 11: 699–708.
  31. He W., Wang X., Shi H., Zhang H., Li L., Jing X. et al. Auricular acupuncture and vagal regulation. Evid.-Based Complement. Altern. Med. 2012: 786839. DOI: 10.1155/2012/786839
  32. Ardell J.L., Randall W.C. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am. J. Physiol. Heart Circ. Physiol. 1986; 251 (4): H764–H773. DOI: 10.1152/ajpheart.1986.251.4.H764
  33. Krahl S. Vagus nerve stimulation for epilepsy: a review of the peripheral mechanisms. Surg. Neurol. Int. 2012; 3 (S1): 47–52. DOI: 10.4103/2152-7806.103015 36. Barbanti P., Grazzi L., Egeo G., Padovan A.M., Liebler E., Bussone G. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J. Headache Pain. 2015; 16: 61. DOI: 10.1186/s10194-015-0542-4
  34. Altavilla R., Paolucci M., Altamura C., Vernieri F. Effects of non-invasive vagus nerve stimulation on cerebral vasomotor reactivity in patients with chronic migraine during intercritical phase: a pilot study. J. Headache Pain. 2015; 16: A62. DOI: 10.1186/1129-2377-16-S1-A62
  35. Capilupi M.J., Kerath S.M., Becker L.B. Vagus nerve stimulation and the cardiovascular system. Cold. Spring Harb. Perspect. Med. 2020; 10 (2): a034173. DOI: 10.1101/cshperspect.a034173
  36. Yu L., Huang B., Po S.S., Tan T., Wang M., Zhou L. et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with STsegment elevation myocardial infarction: a proof-ofconcept study. JACC Cardiovasc. Interv. 2017; 10 (15): 1511–20. DOI: 10.1016/j.jcin.2017.04.036
  37. Shinlapawittayatorn K., Chinda K., Palee S., Surinkaew S., Thunsiri K., Weerateerangkul P. et al. Lowamplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm. 2013; 10 (11): 1700–7. DOI: 10.1016/j.hrthm.2013.08.009
  38. Uitterdijk A., Yetgin T., te Lintel Hekkert M., Sneep S., Krabbendam-Peters I., van Beusekom H.M. et al. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic. Res. Cardiol. 2015; 110 (5): 508. DOI: 10.1007/s00395-015-0508-3
  39. Katare R.G., Ando M., Kakinuma Y., Arikawa M., Handa T., Yamasaki F. et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J. Thorac. Cardiovasc. Surg. 2009; 137 (1): 223–31. DOI: 10.1016/j.jtcvs. 2008.08.020
  40. Chen M., Zhou X., Yu L., Liu Q., Sheng X., Wang Z. et al. Low-level vagus nerve stimulation attenuates myocardial ischemic reperfusion injury by antioxidative stress and antiapoptosis reactions in canines. J. Cardiovasc. Electrophysiol. 2016; 27 (2): 224–31. DOI: 10.1111/jce.12850
  41. Zhao M., He X., Bi X.Y., Yu X.J., Gil Wier W., Zang W.J. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic. Res. Cardiol. 2013; 108 (3): 345. DOI: 10.1007/s00395-013-0345-1
  42. Zhang L., Lu Y., Sun J., Zhou X., Tang B. Subthreshold vagal stimulation suppresses ventricular arrhythmia and inflammatory response in a canine model of acute cardiac ischaemia and reperfusion. Exp. Physiol. 2016; 101 (1): 41–9. DOI: 10.1113/EP085518
  43. Pickard J.M., Davidson S.M., Hausenloy D.J., Yellon D.M. Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic. Res. Cardiol. 2016; 111 (4): 50. DOI: 10.1007/s00395-016-0568-z
  44. Pickard J.M.J., Burke N., Davidson S.M., Yellon D.M. Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischaemic preconditioning. Basic. Res. Cardiol. 2017; 112 (2): 11. DOI: 10.1007/s00395-017-0601-x
  45. Basalay M.V., Mastitskaya S., Mrochek A., Ackland G.L., Del Arroyo A.G., Sanchez J. et al. Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc. Res. 2016; 112 (3): 669–76. DOI: 10.1093/cvr/cvw216
  46. Stavrakis S., Stoner J.A., Humphrey M.B., Morris L., Filiberti A., Reynolds J.C. et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin. Electrophysiol. 2020; 6 (3): 282–91. DOI: 10.1016/j.jacep.2019.11.008
  47. De Couck M., Cserjesi R., Caers R., Zijlstra W.P., Widjaja D., Wolf N. et al. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 2017; 203: 88–96.
  48. Keute M., Machetanz K., Berelidze L., Guggenberger R., Gharabaghi A. Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects. Brain Stimul. 2021; 14 (2): 209–16. DOI: 10.1016/j.brs.2021.01.001
  49. Antonino D., Teixeira A.L., Maia-Lopes P.M., Souza M.C., Sabino-Carvalho J.L., Murray A.R. et al. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 2017; 10: 875–81. DOI: 10.1016/j.brs. 2017.05.006
  50. Tran N., Asad Z., Elkholey K., Scherlag B.J., Po S.S., Stavrakis S. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Trans. Res. 2019; 12: 221–30. DOI: 10.1007/s12265- 018-9853-6
  51. Lamb D.G., Porges E.C., Lewis G.F., Williamson J.B. Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence. Front. Med. 2017; 4: 124. DOI: 10.3389/fmed.2017.00124
  52. Borges U., Laborde S., Raab M. Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity. PLoS One. 2019; 14 (10): e0223848. DOI: 10.1371/journal.pone.0223848
  53. Burger A.M., Van der Does W., Thayer J.F., Brosschot J.F., Verkuil B. Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biol. Psychol. 2019; 142: 80–9. DOI: 10.1016/j.biopsycho.2019.01.014
  54. Burger A.M., Van Diest I., Van der Does W., Korbee J.N., Waziri N., Brosschot J.F., Verkuil B. The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol. Learn. Mem. 2019; 161: 192–201. DOI: 10.1016/j.nlm.2019.04.006
  55. Teckentrup V., Neubert S., Santiago J.C.P., Hallschmid M., Walter M., Kroemer N.B. Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul. 2020; 13 (2): 470–3. DOI: 10.1016/j.brs.2019.12.018
  56. Farmer A.D., Strzelczyk A., Finisguerra A., Gourine A.V., Gharabaghi A., Hasan A. et al. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front. Hum. Neurosci. 2021; 14: 568051. DOI: 10.3389/fnhum.2020.568051
  57. Goadsby P., Grosberg B., Mauskop A., Cady R., Simmons K. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014; 34: 986–93. DOI: 10.1177/0333102414524494
  58. Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A. et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culturederived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation. 2016; 19: 283–90. DOI: 10.1111/ner.12398
  59. Silberstein S.D., Mechtler L.L., Kudrow D.B., Calhoun A.H., McClure C., Saper J.R. et al. Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, doubleblind, Sham-controlled ACT1 study. Headache. 2016; 56: 1317–32. DOI: 10.1111/head.12896
  60. Yuan H., Silberstein S.D. Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache. 2016; 56: 259–66. DOI: 10.1111/head.12650
  61. Sellaro R., Steenbergen L., Verkuil B., van IJzendoorn M.H., Colzato L.S. Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball. Front. Psychol. 2015; 6: 499. DOI: 10.3389/fpsyg.2015.00499
  62. Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A. et al. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Archiv. Psychiatry Clin. Neurosci. 2015; 265: 589–600. DOI: 10.1007/s00406-015-0618-9
  63. Jongkees B.J., Immink M.A., Finisguerra A., Colzato L.S. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front. Psychol. 2018; 9: 1159. DOI: 10.3389/fpsyg.2018.01159
  64. Садыкова Е.В., Юлдашев З.М., Гапаненок А.Е. Цифровая модель электростимуляции аурикулярной ветви вагусного нерва. Биотехносфера. 2022; 1 (67): 52–5. DOI: 10.25960/bts.2022.1.52
  65. Trevizol A.P., Shiozawa P., Taiar I., Soares A., Gomes J.S., Barros M.D. et al. Transcutaneous vagus nerve stimulation (taVNS) for major depressive disorder: an open label proof-of-concept trial. Brain Stimul. 2016; 9: 453–4. DOI: 10.1016/j.brs.2016.02.001
  66. Cha W.W., Song K., Lee H.Y. Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation. Brain Stimul. 2016; 9: 469–70. DOI: 10.1016/j.brs.2016.03.011
  67. Fischer R., Ventura-Bort C., Hamm A., Weymar M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect. Behav. Neurosci. 2018; 18: 680–93. DOI: 10.3758/s13415-018-0596-2
  68. Redgrave J., Day D., Leung H., Laud P.J., Ali А., Lindert R. et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 2018; 11: 1225–38.
****
  1. Prescott S.L., Liberles S.D. Internal senses of the vagus nerve. Neuron. 2022; 110 (4): 579–99. DOI: 10.1016/j.neuron.2021.12.020
  2. Ottaviani M.M., Macefield V.G. Structure and functions of the vagus nerve in mammals. Compr. Physiol. 2022; 12 (4): 3989-4037. DOI: 10.1002/cphy.c210042
  3. Kharbanda R.K., van der Does W.F.B., van Staveren L.N., Taverne Y.J.H.J., Bogers A.J.J.C., de Groot N.M.S. Vagus nerve stimulation and atrial fibrillation: revealing the paradox. Neuromodulation. 2022; 25 (3): 356–65. DOI: 10.1016/j.neurom.2022.01.008
  4. Asconapé J.J., Moore D.D., Zipes D.P., Hartman L.M., Duffell W.H.Jr. Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia. 1999; 40 (10): 1452–4. DOI: 10.1111/j.1528- 1157.1999.tb02019.x
  5. Liu A., Rong P., Gong L., Song L., Wang X., Li L. et al. Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med. Sci. Monit. 2018; 24: 8439–48. DOI: 10.12659/MSM.910689
  6. Rong P., Liu A., Zhang J., Wang Y., Yang A., Li L. et al. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin. Med. J. 2014; 127: 300–4.
  7. Fang J., Egorova N., Rong P. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 2017; 14: 105–11. DOI: 10.1016/j.nicl.2016.12.016
  8. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J. et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 2016; 195: 172–9. DOI: 10.1016/j.jad.2016.02.031
  9. Gaul C., Diener H.-C., Silver N., Magis D., Reuter U., Andersson A. et al. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia. 2016; 36: 534–46. DOI: 10.1177/0333102415607070
  10. Hyvärinen P., Yrttiaho S., Lehtimäki J., Ilmoniemi R.J., Mäkitie A., Ylikoski J. et al. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 2015; 36 (3): e76–e85. DOI: 10.1097/AUD.0000000000000123
  11. De Ferrari G.M., Crijns H.J., Borggrefe M., Milasinovic G., Smid J., Zabel M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 2011; 32 (7): 847–55. DOI: 10.1093/eurheartj/ehq391
  12. Pavlyukova E.N., Kuzmichkina M.A., Afanasiev S.A., Karpov R.S. Auricular vagal stimulation in the treatment of patients with left ventricular dysfunction. Clinical Medicine. 2013; 91 (7): 27–31 (in Russ.).
  13. Afanasiev S.A., Pavlyukova E.N., Kuzmichkina M.A., Anfinogenova Y.D., Karpov R.S. Effect of stimulating the auricular branch of the vagus nerve on the heart rate in patients with severe chronic heart failure. Human Physiology. 2016; 42 (4): 77–82 (in Russ.). DOI: 10.7868/S0131164616030024
  14. Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A. et al. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Archiv. Psychiatry Clin. Neurosci. 2015; 265: 589–600. DOI: 10.1007/s00406-015-0618-9
  15. Keute M., Boehrer L., Ruhnau P., Heinze H.-J., Zaehle T. Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception. Front. Neurosci. 2019; 13: 227. DOI: 10.3389/fnins.2019.00227
  16. Drapkina O.M., Dzhioeva O.N., Rogozhkina E.A., Shvarts E.N., Kiselev A.R. Percutaneous non-invasive stimulation: possibilities and prospects of the method in the practice of specialists in internal diseases. Complex Issues of Cardiovascular Diseases. 2022; 11 (4): 191–200 (in Russ.). DOI: 10.17802/2306-1278-2022-11-4-191-200
  17. Kiselev A.R., Schwartz E.N., Dzhioeva O.N., Drapkina O.M. Physiological basis of obesity treatment by percutaneous vagus nerve stimulation. Profilakticheskaya Meditsina. 2022; 25 (10): 111–5 (in Russ.). DOI: 10.17116/profmed202225101111
  18. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002; 1: 477–82. 19. Johnson R.L., Wilson C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018; 11: 203–13. DOI: 10.2147/JIR.S163248
  19. Fahy B.G. Intraoperative and perioperative complications with a vagus nerve stimulation device. J. Clin. Anesth. 2010; 22: 213–22. DOI: 10.1016/j.jclinane.2009.10.002
  20. Ginsberg L.E., Eicher S.A. Great auricular nerve: anatomy and imaging in a case of perineural tumor spread. Am. J. Neuroradiol. 2000; 21: 568–71.
  21. Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R.F., Papa M. et al. Current directions in the auricular vagus nerve stimulation I – a physiological perspective. Front. Neurosci. 2019; 13: 854. DOI: 10.3389/fnins.2019.00854
  22. Arnold F. Anatomische und physiologische Untersuchungen über das Auge des Menschen. Groos, Heidelberg Leipzig; 1832: VI–VII.
  23. Sherrington C.S. Experiments in examination of the peripheral distribution of the fibres of the posterior roots of some spinal nerves. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1898; 190: 45–186.
  24. Fay T. Observations and results from intracranial section of the glossopharyngeus and vagus nerves in man. J. Neurol. Psychopathol. 1927; 8: 110–23. 26. Peuker E.T., Filler T.J. The nerve supply of the human auricle. Clin. Anat. 2002; 15: 35–7.
  25. Kiyokawa J., Yamaguchi K., Okada R., Maehara T., Akita K. Origin, course and distribution of the nerves to the posterosuperior wall of the external acoustic meatus. Anat. Sci. Int. 2014; 89 (4): 238–45. DOI: 10.1007/s12565-014-0231-4
  26. Murray A.R., Atkinson L., Mahadi M.K., Deuchars S.A., Deuchars J. The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control. Auton. Neurosci. 2016; 199: 48–53.
  27. Badran B.W., Glusman C.E., Badran A.W., DeVries W.H., Borckhardt J.J., George M.S. et al. The physiological and neurobiological effects of transcutaneous auricular vagus nerve stimulation (taVNS). Brain. Stimul. 2017; 10: 378.
  28. Badran B.W., Dowdle L.T., Mithoefer O.J., LaBate N.T., Coatsworth J., Brown J.C. et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain. Stimul. 2018; 11: 947–8.
  29. Badran B.W., Jenkins D.D., DeVries W.H., Dancy M., Summers P.M., Mappin G.M. et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain. Stimul. 2018; 11: 492–500.
  30. Badran B.W., Mithoefer O.J., Summer C.E., LaBate N.T., Glusman C.E., Badran A.W. et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain. Stimul. 2018; 11: 699–708.
  31. He W., Wang X., Shi H., Zhang H., Li L., Jing X. et al. Auricular acupuncture and vagal regulation. Evid.-Based Complement. Altern. Med. 2012: 786839. DOI: 10.1155/2012/786839
  32. Ardell J.L., Randall W.C. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am. J. Physiol. Heart Circ. Physiol. 1986; 251 (4): H764–H773. DOI: 10.1152/ajpheart.1986.251.4.H764
  33. Krahl S. Vagus nerve stimulation for epilepsy: a review of the peripheral mechanisms. Surg. Neurol. Int. 2012; 3 (S1): 47–52. DOI: 10.4103/2152-7806.103015 36. Barbanti P., Grazzi L., Egeo G., Padovan A.M., Liebler E., Bussone G. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J. Headache Pain. 2015; 16: 61. DOI: 10.1186/s10194-015-0542-4
  34. Altavilla R., Paolucci M., Altamura C., Vernieri F. Effects of non-invasive vagus nerve stimulation on cerebral vasomotor reactivity in patients with chronic migraine during intercritical phase: a pilot study. J. Headache Pain. 2015; 16: A62. DOI: 10.1186/1129-2377-16-S1-A62
  35. Capilupi M.J., Kerath S.M., Becker L.B. Vagus nerve stimulation and the cardiovascular system. Cold. Spring Harb. Perspect. Med. 2020; 10 (2): a034173. DOI: 10.1101/cshperspect.a034173
  36. Yu L., Huang B., Po S.S., Tan T., Wang M., Zhou L. et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with STsegment elevation myocardial infarction: a proof-ofconcept study. JACC Cardiovasc. Interv. 2017; 10 (15): 1511–20. DOI: 10.1016/j.jcin.2017.04.036
  37. Shinlapawittayatorn K., Chinda K., Palee S., Surinkaew S., Thunsiri K., Weerateerangkul P. et al. Lowamplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm. 2013; 10 (11): 1700–7. DOI: 10.1016/j.hrthm.2013.08.009
  38. Uitterdijk A., Yetgin T., te Lintel Hekkert M., Sneep S., Krabbendam-Peters I., van Beusekom H.M. et al. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic. Res. Cardiol. 2015; 110 (5): 508. DOI: 10.1007/s00395-015-0508-3
  39. Katare R.G., Ando M., Kakinuma Y., Arikawa M., Handa T., Yamasaki F. et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J. Thorac. Cardiovasc. Surg. 2009; 137 (1): 223–31. DOI: 10.1016/j.jtcvs. 2008.08.020
  40. Chen M., Zhou X., Yu L., Liu Q., Sheng X., Wang Z. et al. Low-level vagus nerve stimulation attenuates myocardial ischemic reperfusion injury by antioxidative stress and antiapoptosis reactions in canines. J. Cardiovasc. Electrophysiol. 2016; 27 (2): 224–31. DOI: 10.1111/jce.12850
  41. Zhao M., He X., Bi X.Y., Yu X.J., Gil Wier W., Zang W.J. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic. Res. Cardiol. 2013; 108 (3): 345. DOI: 10.1007/s00395-013-0345-1
  42. Zhang L., Lu Y., Sun J., Zhou X., Tang B. Subthreshold vagal stimulation suppresses ventricular arrhythmia and inflammatory response in a canine model of acute cardiac ischaemia and reperfusion. Exp. Physiol. 2016; 101 (1): 41–9. DOI: 10.1113/EP085518
  43. Pickard J.M., Davidson S.M., Hausenloy D.J., Yellon D.M. Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic. Res. Cardiol. 2016; 111 (4): 50. DOI: 10.1007/s00395-016-0568-z
  44. Pickard J.M.J., Burke N., Davidson S.M., Yellon D.M. Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischaemic preconditioning. Basic. Res. Cardiol. 2017; 112 (2): 11. DOI: 10.1007/s00395-017-0601-x
  45. Basalay M.V., Mastitskaya S., Mrochek A., Ackland G.L., Del Arroyo A.G., Sanchez J. et al. Glucagon-like peptide-1 (GLP-1) mediates cardioprotection by remote ischaemic conditioning. Cardiovasc. Res. 2016; 112 (3): 669–76. DOI: 10.1093/cvr/cvw216
  46. Stavrakis S., Stoner J.A., Humphrey M.B., Morris L., Filiberti A., Reynolds J.C. et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin. Electrophysiol. 2020; 6 (3): 282–91. DOI: 10.1016/j.jacep.2019.11.008
  47. De Couck M., Cserjesi R., Caers R., Zijlstra W.P., Widjaja D., Wolf N. et al. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 2017; 203: 88–96.
  48. Keute M., Machetanz K., Berelidze L., Guggenberger R., Gharabaghi A. Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects. Brain Stimul. 2021; 14 (2): 209–16. DOI: 10.1016/j.brs.2021.01.001
  49. Antonino D., Teixeira A.L., Maia-Lopes P.M., Souza M.C., Sabino-Carvalho J.L., Murray A.R. et al. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 2017; 10: 875–81. DOI: 10.1016/j.brs. 2017.05.006
  50. Tran N., Asad Z., Elkholey K., Scherlag B.J., Po S.S., Stavrakis S. Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Trans. Res. 2019; 12: 221–30. DOI: 10.1007/s12265- 018-9853-6
  51. Lamb D.G., Porges E.C., Lewis G.F., Williamson J.B. Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence. Front. Med. 2017; 4: 124. DOI: 10.3389/fmed.2017.00124
  52. Borges U., Laborde S., Raab M. Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity. PLoS One. 2019; 14 (10): e0223848. DOI: 10.1371/journal.pone.0223848
  53. Burger A.M., Van der Does W., Thayer J.F., Brosschot J.F., Verkuil B. Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biol. Psychol. 2019; 142: 80–9. DOI: 10.1016/j.biopsycho.2019.01.014
  54. Burger A.M., Van Diest I., Van der Does W., Korbee J.N., Waziri N., Brosschot J.F., Verkuil B. The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol. Learn. Mem. 2019; 161: 192–201. DOI: 10.1016/j.nlm.2019.04.006
  55. Teckentrup V., Neubert S., Santiago J.C.P., Hallschmid M., Walter M., Kroemer N.B. Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul. 2020; 13 (2): 470–3. DOI: 10.1016/j.brs.2019.12.018
  56. Farmer A.D., Strzelczyk A., Finisguerra A., Gourine A.V., Gharabaghi A., Hasan A. et al. International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Front. Hum. Neurosci. 2021; 14: 568051. DOI: 10.3389/fnhum.2020.568051
  57. Goadsby P., Grosberg B., Mauskop A., Cady R., Simmons K. Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia. 2014; 34: 986–93. DOI: 10.1177/0333102414524494
  58. Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A. et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culturederived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulation. 2016; 19: 283–90. DOI: 10.1111/ner.12398
  59. Silberstein S.D., Mechtler L.L., Kudrow D.B., Calhoun A.H., McClure C., Saper J.R. et al. Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, doubleblind, Sham-controlled ACT1 study. Headache. 2016; 56: 1317–32. DOI: 10.1111/head.12896
  60. Yuan H., Silberstein S.D. Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache. 2016; 56: 259–66. DOI: 10.1111/head.12650
  61. Sellaro R., Steenbergen L., Verkuil B., van IJzendoorn M.H., Colzato L.S. Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball. Front. Psychol. 2015; 6: 499. DOI: 10.3389/fpsyg.2015.00499
  62. Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A. et al. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Archiv. Psychiatry Clin. Neurosci. 2015; 265: 589–600. DOI: 10.1007/s00406-015-0618-9
  63. Jongkees B.J., Immink M.A., Finisguerra A., Colzato L.S. Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front. Psychol. 2018; 9: 1159. DOI: 10.3389/fpsyg.2018.01159
  64. Sadykova E.V., Yuldashev Z.M., Gapanenok A.E. Digital model of electrical stimulation of the auricular branch of the vagus nerve. Biotekhnosfera. 2022; 1 (67): 52–5 (in Russ.). DOI: 10.25960/bts.2022.1.52
  65. Trevizol A.P., Shiozawa P., Taiar I., Soares A., Gomes J.S., Barros M.D. et al. Transcutaneous vagus nerve stimulation (taVNS) for major depressive disorder: an open label proof-of-concept trial. Brain Stimul. 2016; 9: 453–4. DOI: 10.1016/j.brs.2016.02.001
  66. Cha W.W., Song K., Lee H.Y. Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation. Brain Stimul. 2016; 9: 469–70. DOI: 10.1016/j.brs.2016.03.011
  67. Fischer R., Ventura-Bort C., Hamm A., Weymar M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect. Behav. Neurosci. 2018; 18: 680–93. DOI: 10.3758/s13415-018-0596-2
  68. Redgrave J., Day D., Leung H., Laud P.J., Ali А., Lindert R. et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 2018; 11: 1225–38.

Об авторах

  • Шварц Владимир Александрович, д-р мед. наук, вед. науч. сотр., профессор кафедры сердечно-сосудистой хирургии с курсом аритмологии и клинической электрофизиологии; ORCID
  • Сижажев Эльдар Муратович, ординатор; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A