Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The influence of the bifurcation angle of the common carotid artery on changes in local hemodynamic parameters

Authors: Derbilova V.P.1 2, Vinogradov R.A.1 2, Zakharov Yu.N.3, Borisov V.G., 3 4 Kheteeva E.E.1 2, Vinogradova E.R.1, Ivashchuk V.Yu.1, Meshcheryakova O.M.2, Gagin V.A.2, Zyablova E.I.2, Baryshev A.G.1 2, Porkhanov V.A.2

Company:
1 Kuban State Medical University, Krasnodar, Russian Federation
2 Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1 , Krasnodar, Russian Federation
3 Federal Research Center for Information and Computational Technologies, Novosibirsk, Russian Federation
4 Kemerovo State University, Kemerovo, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-4-371-379

UDC: 616.133-007.2

Link: Clinical Physiology of Blood Circulaiton. 2023; 4 (20): 371-379

Quote as: Derbilova V.P., Vinogradov R.A., Zakharov Yu.N., Borisov V.G., Kheteeva E.E., Vinogradova E.R., Ivashchuk V.Yu., Meshcheryakova O.M., Gagin V.A., Zyablova E.I., Baryshev A.G., Porkhanov V.A. The influence of the bifurcation angle of the common carotid artery on changes in local hemodynamic parameters. Clinical Physiology of Circulation. 2023; 20 (4): 371–9 (in Russ.). DOI: 10.24022/1814-6910-2023-20-4-371-379

Received / Accepted:  09.11.2023 / 04.12.2023

Download
Full text:  

Abstract

Objective. To study the influence of the bifurcation angle of the common carotid artery on changes in local hemodynamic parameters in isolation and in combination with other geometric parameters and systemic risk factors for atherosclerosis.

Material and methods. We analyzed the anatomy and geometry of the bifurcation of the common carotid artery (CCA) in patients without pathology. Geometric parameters were studied on the basis of computed tomography data of patients undergoing research at the Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1 in Krasnodar for another reason not related to cerebral atherosclerosis. Using specialized software, geometric models were built and hemodynamics in the area of the bifurcation of the common carotid artery were studied. The data obtained answer the question about the dependence of hemodynamics on the magnitude of the CCA bifurcation angle.

Results. In total, the study included 85 models of CCA bifurcation, 47 (55.3%) female models of bifurcation, 38 (44.7%) male models. The relationship between the bifurcation angle and age, the presence of systemic risk factors for the development of atherosclerosis, as well as other geometric parameters of the CCA bifurcation was analyzed. A statistically significant relationship was found when comparing the bifurcation angle with age, the type of blood flow in the proximal part of the CCA, and the diameter of the ICA.

Conclusion. The bifurcation angle of the common carotid artery, when combined with systemic risk factors, or with an increase in the diameter of the ICA bulb, increases the likelihood of the formation of a carotid atherosclerotic plaque.

References

  1. Phan T.G., Beare R.J., Jolley D., Das G., Ren M., Wong K. et al. Carotid artery anatomy and geometry as risk factors for carotid atherosclerotic disease. Stroke. 2012; 43: 1596–601. DOI: 10.1161/STROKEAHA.111.645499
  2. Хелимский Д.А., Бадоян А.Г., Эралиев Т.К., Крестьянинов О.В. Особенности локальной гемодинамики и формирования атеросклеротического поражения в бифуркациях коронарных артерий. Российский кардиологический журнал. 2020; 25 (5): 106–13. DOI: 10.15829/1560-4071-2020-3900
  3. Thomas J.B., Antiga L., Che S.L., Milner J.S., Steinman D.A., Spence J.D. et al. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke. 2005; 36: 2450–6. DOI: 10.1191/01.STR.0000185679.62643.0a
  4. Huang X., Yin X., Xu Y., Jia X., Li J., Niu P. et al. Morphometric and hemodynamic analysis of atherosclerotic progression in human carotid artery bifurcations. Am. J. Physiol. Heart Circ. Physiol. 2016; 310: 639–47. DOI: 10.1152/ajpheart.00464.2015
  5. Strecker C., Krafft A., Kaufhold L., Hüllebrandt M., Weber S., Laudig U. et al. Carotid geometry is an independent predictor of wall thickness – a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J. Cardiovasc. Magn. Reson. 2020; 22 (1): 67. DOI: 10.1186/s12968-020-00657-5
  6. Ayachit U. 2015 The ParaView Guide: A Parallel Visualization Application. NY: Kitware; 2015. Malek A.M., Alper S.L., Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999; 282 (21): 2035–42.
  7. Harrison G.J., How T.V., Poole R.J., Brennan J.A., Naik J.B., Vallabhaneni S.R., Fisher R.K. Closure technique after carotid endarterectomy influences local hemodynamics. J. Vasc. Surg. 2014; 60 (2): 418–27. DOI: 10.1016/j.jvs.2014.01.069
  8. Ngo M.T., Kwak H.S., Ho C.G., Koh E.J. Longitudinal study of carotid artery bifurcation geometry using magnetic resonance angiography. Vascular. 2019; 27: 312–7. DOI: 10.1177/1708538119828262
  9. Дербилова В.П., Виноградов Р.А., Захаров Ю.Н., Борисов В.Г., Трегубенко К.А., Мещерякова О.М. Компьютерное моделирование гемодинамических показателей в нормальной бифуркации общей сонной артерии. Ангиология и сосудистая хирургия. 2022; 28 (1): 29–35. DOI: 10.33029/1027-6661-2022-28-1-29-35 Derbilova V.P., Vinogradov R.A., Zakharov Yu.N., Borisov V.G., Tregubenko K.A., Meshcheryakova O.M. Computer modeling of hemodynamic parameters in normal bifurcation of the common carotid artery. Angiology and Vascular Surgery. 2022; 28 (1): 29–35 (in Russ.). DOI: 10.33029/1027-6661-2022-28-1-29-35
  10. Гавриленко А.В., Николенко В.Н., Аль-Юсеф Н.Н., Жарикова Т.С., Булатова Л.Р., Ли Ч. Корреляция между морфологическими и биомеханическими особенностями и атеросклерозом сонных артерий. Наука и инновации в медицине. 2022; 7 (3): 160–3. DOI: 10.35693/2500-1388-2022-7-3-160-163
  11. Гатаулин Я.А., Зайцев Д.К., Смирнов Е.М., Юхнев А.Д. Структура нестационарного течения в пространственно-извитой модели общей сонной артерии со стенозом: численное исследование. Российский журнал биомеханики. 2019; 23 (1): 69–78.
  12. Saho T., Onishi H. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study. Radiol. Phys. Technol. 2016; 9: 277–85. DOI: 10.1007/s12194-016-0360-7
  13. Apaydin M., Cetinoglu K. Carotid angle in young stroke. Clin. Imaging. 2021; 70: 10–7. DOI: 10.1016/j.clinimag.2020.10.020
  14. Domanin M., Gallo D., Vergara C., Biondetti P., Forzenigo L.V., Morbiducci U. Prediction of long term restenosis risk after surgery in the carotid bifurcation by hemodynamic and geometric analysis. Ann. Biomed. Eng. 2019; 47: 1129–40. DOI: 10.1007/s10439-019-02201-8
  15. Дербилова В.П., Виноградов Р.А., Капран Т.И., Захаров Ю.Н., Борисов В.Г., Виноградова Э.Р. Анатомия и геометрия бифуркации общей сонной артерии. Клиническая физиология кровообращения. 2022; 19 (1): 25–32. DOI: 10.24022/1814-6910-2022-19-1-25-32
****
  1. Phan T.G., Beare R.J., Jolley D., Das G., Ren M., Wong K. et al. Carotid artery anatomy and geometry as risk factors for carotid atherosclerotic disease. Stroke. 2012; 43: 1596–601. DOI: 10.1161/STROKEAHA.111.645499
  2. Khelimsky D.A., Badoyan A.G., Eraliev T.K., Krestyaninov O.V. Features of local hemodynamics and the formation of atherosclerotic lesions in coronary artery bifurcation. Russian Journal of Cardiology. 2020; 25 (5): 3900 (in Russ.). DOI: 10.15829/1560-4071-2020-3900
  3. Thomas J.B., Antiga L., Che S.L., Milner J.S., Steinman D.A., Spence J.D. et al. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke. 2005; 36: 2450–6. DOI: 10.1191/01.STR.0000185679.62643.0a
  4. Huang X., Yin X., Xu Y., Jia X., Li J., Niu P. et al. Morphometric and hemodynamic analysis of atherosclerotic progression in human carotid artery bifurcations. Am. J. Physiol. Heart Circ. Physiol. 2016; 310: 639–47. DOI: 10.1152/ajpheart.00464.2015
  5. Strecker C., Krafft A., Kaufhold L., Hüllebrandt M., Weber S., Laudig U. et al. Carotid geometry is an independent predictor of wall thickness – a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J. Cardiovasc. Magn. Reson. 2020; 22 (1): 67. DOI: 10.1186/s12968-020-00657-5
  6. Ayachit U. 2015 The ParaView Guide: A Parallel Visualization Application. NY: Kitware; 2015. Malek A.M., Alper S.L., Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999; 282 (21): 2035–42.
  7. Harrison G.J., How T.V., Poole R.J., Brennan J.A., Naik J.B., Vallabhaneni S.R., Fisher R.K. Closure technique after carotid endarterectomy influences local hemodynamics. J. Vasc. Surg. 2014; 60 (2): 418–27. DOI: 10.1016/j.jvs.2014.01.069
  8. Ngo M.T., Kwak H.S., Ho C.G., Koh E.J. Longitudinal study of carotid artery bifurcation geometry using magnetic resonance angiography. Vascular. 2019; 27: 312–7. DOI: 10.1177/1708538119828262
  9. Derbilova V.P., Vinogradov R.A., Zakharov Yu.N., Borisov V.G., Tregubenko K.A., Meshcheryakova O.M. Computer modeling of hemodynamic parameters in normal bifurcation of the common carotid artery. Angiology and Vascular Surgery. 2022; 28 (1): 29–35 (in Russ.). DOI: 10.33029/1027-6661-2022-28-1-29-35
  10. Gavrilenko A.V., Nikolenko V.N., Al-Yusef N.N., Zharikova T.S., Bulatova L.R., Li Zh. Correlation between morphological and biomechanical features and carotid atherosclerosis. Science and Innovations in Medicine. 2022; 7 (3): 160– 3 (in Russ.). DOI: 10.35693/2500-1388-2022-7-3-160-163
  11. Gataulin Ya.А., Zaytsev D.K., Smirnov Е.М., Yukhnev А.D. The structure of an unsteady flow in a spatially convoluted model of the common carotid artery with stenosis: a numerical study. Russian Journal of Biomechanics. 2019; 23 (1): 69–78 (in Russ.).
  12. Saho T., Onishi H. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study. Radiol. Phys. Technol. 2016; 9: 277–85. DOI: 10.1007/s12194-016-0360-7
  13. Apaydin M., Cetinoglu K. Carotid angle in young stroke. Clin. Imaging. 2021; 70: 10–7. DOI: 10.1016/j.clinimag.2020.10.020
  14. Domanin M., Gallo D., Vergara C., Biondetti P., Forzenigo L.V., Morbiducci U. Prediction of long term restenosis risk after surgery in the carotid bifurcation by hemodynamic and geometric analysis. Ann. Biomed. Eng. 2019; 47: 1129–40. DOI: 10.1007/s10439-019-02201-8
  15. Derbilova V.P., Vinogradov R.A., Kapran T.I., Zakharov Yu.N., Borisov V.G., Vinogradova E.R. Anatomy and geometry of bifurcation of the common carotid artery. Clinical Physiology of Circulation. 2022; 19 (1): 25–32 (in Russ.). DOI: 10.24022/1814-6910-2022-19-1-25-32

About Authors

  • Viktoriya P. Derbilova, Postgraduate, Vascular Surgeon; ORCID
  • Roman A. Vinogradov, Dr. Med. Sci., Professor of Chair of Surgery, Head of Department of Vascular Surgery; ORCID
  • Yuriy N. Zakharov, Dr. Phys.-Math. Sci., Professor, Head of Laboratory; ORCID
  • Vladimir G. Borisov, Cand. Phys.-Math. Sci., Senior Researcher; ORCID
  • Elina E. Kheteeva, Postgraduate, Cardiovascular Surgeon; ORCID
  • Elvira R. Vinogradova, Student; ORCID
  • Valeriy Yu. Ivashchuk, Student; ORCID
  • Olga M. Meshcheryakova, Ultrasound Diagnostician; ORCID
  • Vladimir A. Gagin, Radiologist; ORCID
  • Elena I. Zyablova, Head of X-ray Department; ORCID
  • Aleksandr G. Baryshev, Dr. Med. Sci., Deputy Chief Physician; ORCID
  • Vladimir A. Porkhanov, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Chief Physician; ORCID

 If you found mistakes, select text and press Alt+A