Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Chronic heart failure with preserved ejection fraction – the main diagnostic aspects relevant in patients with coronary heart disease referred for myocardial revascularization

Authors: Ulukhanova U.M., Asymbekova E.U., Kamardinov D.Kh., Buziashvili Yu.I.

DOI: https://doi.org/10.24022/1814-6910-2025-22-3-212-221

UDC: 616.12-008.46-002-07

Link: Clinical Physiology of Blood Circulaiton. 2025; 22 (3): 212-221

Received / Accepted:  06.08.2025 / 17.09.2025

Full text:
Subscribe 🔒

Abstract

The prevalence of chronic heart failure with preserved ejection fraction (HFpEF) ranges from 20% to 60% of patients with heart failure (HF). In most cases, the main cause of HFpEF is impaired relaxation and reduced ventricular myocardial compliance. The term diastolic heart failure (DHF) can be used as a synonym for HFpEF, which can occur independently or coexist with systolic heart failure. The frequency of adverse outcomes in HFpEF is proportional to the mortality rate in systolic HF or HF with low ejection fraction (LVHF). In recent decades, cardiologists and cardiac surgeons have paid increasing attention to the diagnosis, treatment tactics, and risk of developing major cardiovascular complications in the presence of LVHF. The growth in clinical research on the diagnosis of LVEF-HF best illustrates the significance of left ventricular diastolic dysfunction and its impact on prognosis and treatment tactics. In cardiac surgery, the importance of timely diagnosis, treatment, and prevention of LVHF increases several times, as it is directly related to the immediate and long-term results of surgical intervention. Until recently, the presence of clinical data on HF in combination with structural heart abnormalities and elevated levels of brain natriuretic peptides was considered fundamental in the diagnosis of HFpEF. Changes in the functional and morphological parameters of the heart do not always provide a complete picture of the patient's condition, which is why the method of diastolic stress echocardiography or diastolic stress test (DST) was developed. The aim of this study was to provide an overview of current publications on diastolic heart failure and its diagnosis.

References

  1. Галявич А.С., Терещенко С.Н., Ускач Т.М., Агеев Ф.Т., Аронов Д.М., Арутюнов Г.П. идр. Хроническая сердечная недостаточность. Клинические рекомендации 2024. Российский кардиологический журнал. 2024; 29 (11): 6162. DOI: 10.15829/1560-4071-2024-6162
  2. Tsutsui H., Ide T., Ito H. et al. JCS/JHFS 2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. J. Card. Fail. 2021; 27 (12): 1404–1444. DOI: 10.1016/j.cardfail.2021.04.023
  3. Pai R.G., Varadarajan P. Diastolic heart failure mechanisms and assessment revisited. J. Clin. Med. 2024; 13 (11): 3043. DOI: 10.3390/jcm13113043
  4. Hinze A.M., Perin J., Woods A. et al. Diastolic dysfunction in systemic sclerosis: risk factors and impact on mortality. Arthritis. Rheumatol. 2022; 74 (5): 849–859. DOI: 10.1002/art.42054
  5. Kumer S., Desai N., Gona O.J., Kumar V.K., Madhu B. Impact of Updated 2016 ASE/EACVI VIS-À-VIS 2009 ASE Recommendation on the Prevalence of Diastolic Dysfunction and LV Filling Pressures in Patients with Preserved Ejection Fraction. J. Cardiovasc. Imaging. 2021; 29 (1): 31–43. DOI: 10.4250/jcvi.2020.0117
  6. Roger V.L. Epidemiology of heart failure: a contempo-rary perspective. Circ. Res. 2021; 128 (10): 1421–1434. DOI: 10.1161/CIRCRESAHA.121.318172
  7. Goldberg Y.H., Megyessi D., Flam M., Spevack D.M., Sundqvist M.G., Ugander M. Mechanistic validation of the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging Guidelines for the assessment of diastolic dysfunction in heart failure with reduced ejection fraction. Cardiovasc. Ultrasound. 2020; 18 (1): 42. DOI: 10.1186/s12947-020-00224-z
  8. Pai R.G., Varadarajan P. Diastolic heart failure mechanisms and assessment revisited. J. Clin. Med. 2024; 13 (11): 3043. DOI: 10.3390/jcm13113043
  9. Sorrentino R., Esposito R., Santoro C. et al. Practical impact of new diastolic recommendations on noninvasive estimation of left ventricular diastolic function and filling pressures. J. Am. Soc. Echocardiogr. 2020; 33 (2): 171–181. DOI: 10.1016/j.echo.2019.08.013
  10. Lembo M., Manzi M.V., Mancusi C. et al. Advanced imaging tools for evaluating cardiac morphological and functional impairment in hypertensive disease. J. Hypertens. 2022; 40 (1): 4–14. DOI: 10.1097/HJH. 0000000000002967
  11. Choi H., Ahn H.B., Park J. et al. Left atrial strain predicts poor exercise capacity in patients with indeterminate diastolic function. Korean Circ. J. 2025; 55 (5): 382–393. DOI: 10.4070/kcj.2024.0240
  12. Nauta J.F., Hummel Y.M., van der Meer P., Lam C.S.P., Voors A.A., van Melle J.P. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2018; 20 (9): 1303–1311. DOI: 10.1002/ejhf.1220
  13. Harada T., Kagami K., Kato T., Ishii H., Obokata M. Exercise stress echocardiography in the diagnostic evaluation of heart failure with preserved ejection fraction. J. Cardiovasc. Dev. Dis. 2022; 9 (3): 87. DOI: 10.3390/jcdd9030087
  14. Villalba-Orero M., Garcia-Pavia P., Lara-Pezzi E. Non-invasive assessment of HFpEF in mouse models: current gaps and future directions. BMC Med. 2022; 20 (1): 349. DOI: 10.1186/s12916-022-02546-3
  15. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F. 3rd, Dokainish H., Edvardsen T. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016; 29 (4): 277–314. DOI: 10.1016/j.echo.2016.01.011
  16. Sato K., Grant A.D.M., Negishi K. et al. Reliability of updated left ventricular diastolic function recommendations in predicting elevated left ventricular filling pressure and prognosis. Am. Heart J. 2017; 189: 28–39. DOI: 10.1016/j.ahj.2017.03.022
  17. Upadhya B., Rose G.A., Stacey R.B. et al. The role of echocardiography in the diagnosis of heart failure with preserved ejection fraction. Heart Fail. Rev. 2025; 30 (5): 899–922. DOI: 10.1007/s10741-025-10516-z
  18. Maddox T.M., Januzzi J.L. Jr, Allen L.A., Breathett K., Brouse S., Butler J. et al. 2024 ACC Expert Consensus Decision Pathway for treatment of heart failure with reduced ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2024; 83 (15): 1444–1488. DOI: 10.1016/j. jacc.2023.12.024
  19. Lanzarone E., Baratto C., Vicenzi M., Villella F., Rota I., Dewachter C. et al. Haemodynamic validation of the three- step HFA-PEFF algorithm to diagnose heart failure with preserved ejection fraction. ESC Heart Fail. 2023; 10 (4): 2588–2595. DOI: 10.1002/ehf2.14436
  20. Pieske B., Tschöpe C., de Boer R.A., Fraser A.G., An-ker S.D., Donal E. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020; 22 (3): 391–412. DOI: 10.1002/ejhf.1741
  21. Frydas A., Morris D.A., Belyavskiy E., Radhakrishnan A.K., Kropf M., Tadic M. et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure. ESC Heart Fail. 2020; 7 (4): 1956–1965. DOI: 10.1002/ehf2.12820
  22. Guo Y., Wang X., Yang C.G. et al. Noninvasive assessment of myocardial work during left ventricular isovolumic relaxation in patients with diastolic dysfunction. BMC Cardiovasc. Disord. 2023; 23 (1): 129. DOI: 10.1186/ s12872-023-03156-4
  23. Tavernese A., Rizza V., Cammalleri V. et al. Early echocardiographic markers in heart failure with preserved ejection fraction. J. Cardiovasc. Dev. Dis. 2025; 12 (6): 229. DOI: 10.3390/jcdd12060229
  24. Ha J.W., Lulic F., Bailey K.R. et al. Effects of treadmill exercise on mitral inflow and annular velocities in healthy adults. Am. J. Cardiol. 2003; 91: 114–115.
  25. Lancellotti P., Pellikka P.A., Budts W., Chaudhry F.A., Donal E. Dulgheru R. et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the EuropeanAssociation of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging. 2016; 17 (11): 1191– 1229. DOI: 10.1093/ehjci/jew190
  26. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M. et al.; ESC Scientific Document Group. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023; 44 (37): 3627–3639. DOI: 10.1093/eurheartj/ehad195
  27. Ünlü S., Özden Ö., Çelik A. Imaging in heart failure with preserved ejection fraction: a multimodality imaging point of view. Card. Fail. Rev. 2023; 9: e04. DOI: 10.15420/cfr.2022.27
  28. Laws J.L., Maya T.R., Gupta D.K. Stress echocardiography for assessment of diastolic function. Curr. Cardiol. Rep. 2024; 26 (12): 1461–1469. DOI: 10.1007/s11886-024-02142-2
  29. Kitzman D.W., Higginbotham M.B., Cobb F.R., Sheikh K.H., Sullivan M.J. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J. Am. Coll. Cardiol. 1991; 17 (5): 1065–1072. DOI: 10.1016/0735-1097(91)90832-t
  30. Maron B.A., Cockrill B.A., Waxman A.B., Systrom D.M. The invasive cardiopulmonary exercise test. Circulation. 2013; 127 (10): 1157–1164. DOI: 10.1161/CIRCULA-TIONAHA.112.104463
  31. Prasad S.B., Holland D.J., Atherton J.J. Diastolic stress echocardiography: from basic principles to clinical app- lications. Heart. 2018; 104: 1739–1748. DOI: 10.1136/heartjnl-2017-312323
  32. Бокерия Л.А., Семёнов В.Ю., Милиевская Е.Б., Скопин А.И., Голубев Н.А., Прянишников В.В. Хирургическое и интервенционное лечение пациентов с ишемической болезнью сердца в Российской Федерации (статистика: 1996–2022 годы). Грудная и сердечно-сосудистая хирургия. 2024; 66 (3): 291–301. DOI: 10.24022/0236-2791-2024-66-3-291-301
  33. Tsao C.W., Aday A.W., Almarzooq Z.I. et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023; 147 (8): e93–e621. DOI: 10.1161/CIR.0000000000001123
  34. Iacona G.M., Bakhos J.J., Tong M.Z., Bakaeen F.G. Coronary artery bypass grafting in left ventricular dysfunction: when and how. Curr. Opin. Cardiol. 2023; 38 (6): 464–470. DOI: 10.1097/HCO.0000000000001090
  35. Senst B., Kumar A., Diaz R.R. Cardiac Surgery. In: StatPearls. Treasure Island (FL): StatPearls Publishing; September 3, 2024.
  36. Rong L.Q., Rahouma M., Lopes A., Devereux R.B., Kim J., Pryor K.O. et al. Differential myocardial strain in the early postoperative period in patients receiving arterial vs venous bypass grafts: A hypothesis-genera-ting study. J. Card. Surg. 2020; 35 (8): 1824–1831. DOI: 10.1111/jocs.14695
  37. Velagaleti R.S., Vetter J., Parker R. et al. Change in left ventricular ejection fraction with coronary artery revascularization and subsequent risk for adverse cardiovascular outcomes. Circ. Cardiovasc. Interv. 2022; 15 (4): e011284. DOI: 10.1161/CIRCINTERVENTIONS.121.011284
  38. Ng J.Y., Tan E.F., Kemberi M. et al. EuroSCORE II: Current limitations and physiological gaps in risk stratification. Exp. Physiol. Published online July 22, 2025. DOI: 10.1113/EP092900
  39. Аверина И.И., Мироненко М.Ю., Глушко Л.А., Трошин Д.С., Донаканян С.А. Влияние дисфункции правого желудочка на прогноз сердечной недостаточности и выживаемость у кардиохирургических пациентов. Креативная кардиология. 2025; 19 (1): 35–44. DOI: 10.24022/1997-3187-2025-19-1-35-44
  40. Jin Y., Ph D., Wang H., Ph D., Wang Z., Jiang H. et al. The evaluation of preoperative right ventricular diasto-lic dysfunction on coronary artery disease patients with left ventricular dysfunction. Echocardiography. 2014; 31: 1259–1264.
  41. Kaw R., Hernandez A.V., Pasupuleti V., Deshpande A., Mrcp V.N., Bueno H. et al. Effect of diastolic dysfunction on postoperative outcomes after cardiovascular surgery: A systematic review. J. Thorac. Cardiovasc. Surg. 2016; 152: 1142–1153.
  42. Sun L.Y., Gaudino M., Chen R.J., Bader Eddeen A., Ruel M. Long-term outcomes in patients with severely reduced left ventricular ejection fraction undergoing percutaneous coronary intervention vs coronary artery bypass grafting. JAMA Cardiol. 2020; 5 (6): 631–641. DOI: 10.1001/jamacardio.2020.0239
  43. Асымбекова Э.У., Катаева К.Б., Ахмедярова Н.К., Тугеева Э.Ф., Шерстянникова О.М., Борбодоева Б.М., Мацкеплишвили С.Т. Сравнительная характеристика диастолической функции миокарда у женщин и мужчин с ишемической болезнью сердца, направляемых на реваскуляризацию миокарда. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2014; 15 (4): 23–33.
  44. Катаева К.Б., Асымбекова Э.У., Ахмедярова Н.К., Шерстянникова О.М., Ушерзон М.Б., Бузиашвили Ю.И. Влияние аортокоронарного шунтирования на клинико-функциональное состояние сердца у женщин и мужчин с нарушенной диастолической функцией левого желудочка. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2015; 16 (S3): 144.
  45. Riggs T.W. Abnormal right ventricular filling in patients with dilated cardiomyopathy. Pediatr. Cardiol. 1993; 14 (1): 1–4. DOI: 10.1007/BF00794835
  46. Sumin A.N., Shcheglova A.V., Oganyan N.D., Romanenko E.Y., Sergeeva T.Y. Right ventricular diastolic dysfunction before coronary artery bypass grafting: impact on 5-year follow-up outcomes. J. Clin. Med. 2025; 14 (4): 1398. DOI: 10.3390/jcm14041398
  47. Denault A.Y., Couture P., Buithieu J., Haddad F., Carri-er M., Babin D. et al. Left and right ventricular diasto- lic dysfunction as predictors of difficult separation from cariodpulmonary bypass. Can. J. Anesth. 2006; 53: 1020– 1029.
  48. Romano G., Magro S., Agnese V. et al. Echocardiography to estimate high filling pressure in patients with heart failure and reduced ejection fraction. ESC Heart Fail. 2020; 7 (5): 2268–2277. DOI: 10.1002/ehf2.12748
  49. Lin J., Ma H., Gao L. et al. Left atrial reservoir strain combined with E/E' as a better single measure to predict elevated LV filling pressures in patients with coronary artery disease. Cardiovasc. Ultrasound. 2020; 18 (1): 11. DOI: 10.1186/s12947-020-00192-4
  50. Borde D., Joshi S., Jasapara A., Joshi P., Asegaonkar B., Apsingekar P. Left atrial strain as a single parameter to predict left ventricular diastolic dysfunction and elevated left ventricular filling pressure in patients undergoing off- pump coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth. 2021; 35 (6): 1618–1625. DOI: 10.1053/ j.jvca.2020.11.066
  51. Lassen M.C.H., Biering-Sørensen S.R., Olsen F.J., Skaarup K.G., Tolstrup K., Qasim A.N. et al. Ratio of transmitral early filling veloci-ty to early diastolic strain rate predicts long-term risk of cardiovascular morbidity and mortality in the general population. Eur. Heart J. 2019; 40 (6): 518–525.
  52. Аббасова М.А., Рустамбекова А.Р., Арипов А.М., Норузбаева А.М. Левое предсердие как мишень в эхокардиографической диагностике сердечной недостаточности с сохраненной фракцией выброса. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2025; 26 (1): 13–18. DOI: 10.24022/1810-0694-2025-26-1-13-18
  53. Olsen F.J., Lindberg S., Fritz-Hansen T., Modin D., Pedersen S., Iversen A. et al. Prognostic value and interplay between myocardial tissue velocities in patients undergoing coronary artery bypass grafting. Am. J. Cardiol. 2020; 144: 37–45.
  54. Aggarwal R., Potel K.N., Shao A., So S.W., Swingen C., Reyes C.P. et al. An adjuvant stem cell patch with coronary artery bypass graft surgery improves diastolic recovery in porcine hibernating myocardium. Int. J. Mol. Sci. 2023; 24 (6): 5475. DOI: 10.3390/ijms24065475
  55. Khedr W.E., Elashmawy H., Alawady S., Attia A.E., Salama S.R., Helmy E.D., Mahmoud A.E. Echocardiographic assessment of diastolic dysfunction and the efficacy of ivabradine therapy post-CABG surgery. J. Acute Care Resuscitat. 2024; 1 (3): 80–85. DOI: 10.4103/jacresus.jacresus_15_24
  56. Brown J.A., Yousef S., Zhu J., Thoma F., Serna-Gallegos D., Joshi R. et al. The long-term impact of diastolic dysfunction after routine cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2023; 37 (6): 927–932. DOI: 10.1053/j.jvca.2023.01.036
****
  1. Galyavich A.S., Tereshchenko S.N., Uskach T.M., Ageyev F.T., Aronov D.M., Arutyunov G.P. et al. Chronic heart failure. Clinical guidelines 2024. Russian Journal of Cardiology. 2024; 29 (11): 6162 (in Russ.). DOI: a href="https://doi.org/10.15829/1560-4071-2024-6162">10.15829/1560-4071-2024-6162
  2. Tsutsui H., Ide T., Ito H. et al. JCS/JHFS 2021 Guideline Focused Update on Diagnosis and Treatment of Acute and Chronic Heart Failure. J. Card. Fail. 2021; 27 (12): 1404–1444. DOI: 10.1016/j.cardfail.2021.04.023
  3. Pai R.G., Varadarajan P. Diastolic heart failure mechanisms and assessment revisited. J. Clin. Med. 2024; 13 (11): 3043. DOI: 10.3390/jcm13113043
  4. Hinze A.M., Perin J., Woods A. et al. Diastolic dysfunction in systemic sclerosis: risk factors and impact on mortality. Arthritis. Rheumatol. 2022; 74 (5): 849–859. DOI: 10.1002/art.42054
  5. Kumer S., Desai N., Gona O.J., Kumar V.K., Madhu B. Impact of Updated 2016 ASE/EACVI VIS-À-VIS 2009 ASE Recommendation on the Prevalence of Diastolic Dysfunction and LV Filling Pressures in Patients with Preserved Ejection Fraction. J. Cardiovasc. Imaging. 2021; 29 (1): 31–43. DOI: 10.4250/jcvi.2020.0117
  6. Roger V.L. Epidemiology of heart failure: a contempo-rary perspective. Circ. Res. 2021; 128 (10): 1421–1434. DOI: 10.1161/CIRCRESAHA.121.318172
  7. Goldberg Y.H., Megyessi D., Flam M., Spevack D.M., Sundqvist M.G., Ugander M. Mechanistic validation of the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging Guidelines for the assessment of diastolic dysfunction in heart failure with reduced ejection fraction. Cardiovasc. Ultrasound. 2020; 18 (1): 42. DOI: 10.1186/s12947-020-00224-z
  8. Pai R.G., Varadarajan P. Diastolic heart failure mechanisms and assessment revisited. J. Clin. Med. 2024; 13 (11): 3043. DOI: 10.3390/jcm13113043
  9. Sorrentino R., Esposito R., Santoro C. et al. Practical impact of new diastolic recommendations on noninvasive estimation of left ventricular diastolic function and filling pressures. J. Am. Soc. Echocardiogr. 2020; 33 (2): 171–181. DOI: 10.1016/j.echo.2019.08.013
  10. Lembo M., Manzi M.V., Mancusi C. et al. Advanced imaging tools for evaluating cardiac morphological and functional impairment in hypertensive disease. J. Hypertens. 2022; 40 (1): 4–14. DOI: 10.1097/HJH. 0000000000002967
  11. Choi H., Ahn H.B., Park J. et al. Left atrial strain predicts poor exercise capacity in patients with indeterminate diastolic function. Korean Circ. J. 2025; 55 (5): 382–393. DOI: 10.4070/kcj.2024.0240
  12. Nauta J.F., Hummel Y.M., van der Meer P., Lam C.S.P., Voors A.A., van Melle J.P. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2018; 20 (9): 1303–1311. DOI: 10.1002/ejhf.1220
  13. Harada T., Kagami K., Kato T., Ishii H., Obokata M. Exercise stress echocardiography in the diagnostic evaluation of heart failure with preserved ejection fraction. J. Cardiovasc. Dev. Dis. 2022; 9 (3): 87. DOI: 10.3390/jcdd9030087
  14. Villalba-Orero M., Garcia-Pavia P., Lara-Pezzi E. Non-invasive assessment of HFpEF in mouse models: current gaps and future directions. BMC Med. 2022; 20 (1): 349. DOI: 10.1186/s12916-022-02546-3
  15. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F. 3rd, Dokainish H., Edvardsen T. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016; 29 (4): 277–314. DOI: 10.1016/j.echo.2016.01.011
  16. Sato K., Grant A.D.M., Negishi K. et al. Reliability of updated left ventricular diastolic function recommendations in predicting elevated left ventricular filling pressure and prognosis. Am. Heart J. 2017; 189: 28–39. DOI: 10.1016/j.ahj.2017.03.022
  17. Upadhya B., Rose G.A., Stacey R.B. et al. The role of echocardiography in the diagnosis of heart failure with preserved ejection fraction. Heart Fail. Rev. 2025; 30 (5): 899–922. DOI: 10.1007/s10741-025-10516-z
  18. Maddox T.M., Januzzi J.L. Jr, Allen L.A., Breathett K., Brouse S., Butler J. et al. 2024 ACC Expert Consensus Decision Pathway for treatment of heart failure with reduced ejection fraction: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2024; 83 (15): 1444–1488. DOI: 10.1016/j. jacc.2023.12.024
  19. Lanzarone E., Baratto C., Vicenzi M., Villella F., Rota I., Dewachter C. et al. Haemodynamic validation of the three- step HFA-PEFF algorithm to diagnose heart failure with preserved ejection fraction. ESC Heart Fail. 2023; 10 (4): 2588–2595. DOI: 10.1002/ehf2.14436
  20. Pieske B., Tschöpe C., de Boer R.A., Fraser A.G., An-ker S.D., Donal E. et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020; 22 (3): 391–412. DOI: 10.1002/ejhf.1741
  21. Frydas A., Morris D.A., Belyavskiy E., Radhakrishnan A.K., Kropf M., Tadic M. et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure. ESC Heart Fail. 2020; 7 (4): 1956–1965. DOI: 10.1002/ehf2.12820
  22. Guo Y., Wang X., Yang C.G. et al. Noninvasive assessment of myocardial work during left ventricular isovolumic relaxation in patients with diastolic dysfunction. BMC Cardiovasc. Disord. 2023; 23 (1): 129. DOI: 10.1186/ s12872-023-03156-4
  23. Tavernese A., Rizza V., Cammalleri V. et al. Early echocardiographic markers in heart failure with preserved ejection fraction. J. Cardiovasc. Dev. Dis. 2025; 12 (6): 229. DOI: 10.3390/jcdd12060229
  24. Ha J.W., Lulic F., Bailey K.R. et al. Effects of treadmill exercise on mitral inflow and annular velocities in healthy adults. Am. J. Cardiol. 2003; 91: 114–115.
  25. Lancellotti P., Pellikka P.A., Budts W., Chaudhry F.A., Donal E. Dulgheru R. et al. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the EuropeanAssociation of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging. 2016; 17 (11): 1191– 1229. DOI: 10.1093/ehjci/jew190
  26. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M. et al.; ESC Scientific Document Group. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023; 44 (37): 3627–3639. DOI: 10.1093/eurheartj/ehad195
  27. Ünlü S., Özden Ö., Çelik A. Imaging in heart failure with preserved ejection fraction: a multimodality imaging point of view. Card. Fail. Rev. 2023; 9: e04. DOI: 10.15420/cfr.2022.27
  28. Laws J.L., Maya T.R., Gupta D.K. Stress echocardiography for assessment of diastolic function. Curr. Cardiol. Rep. 2024; 26 (12): 1461–1469. DOI: 10.1007/s11886-024-02142-2
  29. Kitzman D.W., Higginbotham M.B., Cobb F.R., Sheikh K.H., Sullivan M.J. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J. Am. Coll. Cardiol. 1991; 17 (5): 1065–1072. DOI: 10.1016/0735-1097(91)90832-t
  30. Maron B.A., Cockrill B.A., Waxman A.B., Systrom D.M. The invasive cardiopulmonary exercise test. Circulation. 2013; 127 (10): 1157–1164. DOI: 10.1161/CIRCULATIONAHA.112.104463
  31. Prasad S.B., Holland D.J., Atherton J.J. Diastolic stress echocardiography: from basic principles to clinical app- lications. Heart. 2018; 104: 1739–1748. DOI: 10.1136/heartjnl-2017-312323
  32. Bokeriya L.A., Semonov V.YU., Miliyevskaya Ye.B., Skopin A.I., Golubev N.A., Pryanishnikov V.V. Surgical and interventional treatment of patients with coronary heart disease in Russian Federation (1996–2022). Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2024; 66 (3): 291–301 (in Russ.). DOI: 10.24022/0236-2791-2024-66-3-291-301.
  33. Tsao C.W., Aday A.W., Almarzooq Z.I. et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation. 2023; 147 (8): e93–e621. DOI: 10.1161/CIR.0000000000001123
  34. Iacona G.M., Bakhos J.J., Tong M.Z., Bakaeen F.G. Coronary artery bypass grafting in left ventricular dysfunction: when and how. Curr. Opin. Cardiol. 2023; 38 (6): 464–470. DOI: 10.1097/HCO.0000000000001090
  35. Senst B., Kumar A., Diaz R.R. Cardiac Surgery. In: StatPearls. Treasure Island (FL): StatPearls Publishing; September 3, 2024.
  36. Rong L.Q., Rahouma M., Lopes A., Devereux R.B., Kim J., Pryor K.O. et al. Differential myocardial strain in the early postoperative period in patients receiving arterial vs venous bypass grafts: A hypothesis-genera-ting study. J. Card. Surg. 2020; 35 (8): 1824–1831. DOI: 10.1111/jocs.14695
  37. Velagaleti R.S., Vetter J., Parker R. et al. Change in left ventricular ejection fraction with coronary artery revascularization and subsequent risk for adverse cardiovascular outcomes. Circ. Cardiovasc. Interv. 2022; 15 (4): e011284. DOI: 10.1161/CIRCINTERVENTIONS.121.011284
  38. Ng J.Y., Tan E.F., Kemberi M. et al. EuroSCORE II: Current limitations and physiological gaps in risk stratification. Exp. Physiol. Published online July 22, 2025. DOI: 10.1113/EP092900
  39. Аверина И.И., Мироненко М.Ю., Глушко Л.А., Трошин Д.С., Донаканян С.А. Влияние дисфункции правого желудочка на прогноз сердечной недостаточности и выживаемость у кардиохирургических пациентов. Креативная кардиология. 2025; 19 (1): 35–44. DOI: 10.24022/1997-3187-2025-19-1-35-44
  40. Jin Y., Ph D., Wang H., Ph D., Wang Z., Jiang H. et al. The evaluation of preoperative right ventricular diasto-lic dysfunction on coronary artery disease patients with left ventricular dysfunction. Echocardiography. 2014; 31: 1259–1264.
  41. Kaw R., Hernandez A.V., Pasupuleti V., Deshpande A., Mrcp V.N., Bueno H. et al. Effect of diastolic dysfunction on postoperative outcomes after cardiovascular surgery: A systematic review. J. Thorac. Cardiovasc. Surg. 2016; 152: 1142–1153.
  42. Sun L.Y., Gaudino M., Chen R.J., Bader Eddeen A., Ruel M. Long-term outcomes in patients with severely reduced left ventricular ejection fraction undergoing percutaneous coronary intervention vs coronary artery bypass grafting. JAMA Cardiol. 2020; 5 (6): 631–641. DOI: 10.1001/jamacardio.2020.0239
  43. Asymbekova E.U., Katayeva K.B., Akhmedyarova N.K., Tugeyeva E.F., Sherstyannikova O.M., Borbodoyeva B.M., Matskeplishvili S.T. Comparative characteristics of myocardial diastolic function in women and men with coronary artery disease referred for myocardial revascularization. The Bulletin of Bakoulev Center for Cardiovascular Surgery. Cardiovascular Diseases. 2014; 15 (4): 23–33 (in Russ.).
  44. Katayeva K.B., Asymbekova E.U., Akhmedyarova N.K., Sherstyannikova O.M., Usherzon M.B., Buziashvili Yu.I. The impact of coronary artery bypass grafting on the clinical and functional state of the heart in women and men with impaired diastolic function of the left ventricle. The Bulletin of Bakoulev Center for Cardiovascular Surgery. Cardiovascular Diseases. 2015; 16 (S3): 144 (in Russ.).
  45. Riggs T.W. Abnormal right ventricular filling in patients with dilated cardiomyopathy. Pediatr. Cardiol. 1993; 14 (1): 1–4. DOI: 10.1007/BF00794835
  46. Sumin A.N., Shcheglova A.V., Oganyan N.D., Romanenko E.Y., Sergeeva T.Y. Right ventricular diastolic dysfunction before coronary artery bypass grafting: impact on 5-year follow-up outcomes. J. Clin. Med. 2025; 14 (4): 1398. DOI: 10.3390/jcm14041398
  47. Denault A.Y., Couture P., Buithieu J., Haddad F., Carri-er M., Babin D. et al. Left and right ventricular diasto- lic dysfunction as predictors of difficult separation from cariodpulmonary bypass. Can. J. Anesth. 2006; 53: 1020– 1029.
  48. Romano G., Magro S., Agnese V. et al. Echocardiography to estimate high filling pressure in patients with heart failure and reduced ejection fraction. ESC Heart Fail. 2020; 7 (5): 2268–2277. DOI: 10.1002/ehf2.12748
  49. Lin J., Ma H., Gao L. et al. Left atrial reservoir strain combined with E/E' as a better single measure to predict elevated LV filling pressures in patients with coronary artery disease. Cardiovasc. Ultrasound. 2020; 18 (1): 11. DOI: 10.1186/s12947-020-00192-4
  50. Borde D., Joshi S., Jasapara A., Joshi P., Asegaonkar B., Apsingekar P. Left atrial strain as a single parameter to predict left ventricular diastolic dysfunction and elevated left ventricular filling pressure in patients undergoing off- pump coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth. 2021; 35 (6): 1618–1625. DOI: 10.1053/ j.jvca.2020.11.066
  51. Lassen M.C.H., Biering-Sørensen S.R., Olsen F.J., Skaarup K.G., Tolstrup K., Qasim A.N. et al. Ratio of transmitral early filling veloci-ty to early diastolic strain rate predicts long-term risk of cardiovascular morbidity and mortality in the general population. Eur. Heart J. 2019; 40 (6): 518–525.
  52. Abbasova M.A., Rustambekova A.R., Aripov A.M., Noruzbayeva A.M. Left atrium as a target in echocardiographic diagnosis of heart failure with preserved ejection fraction. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2025; 26 (1): 13–18 (in Russ.). DOI: 10.24022/1810-0694-2025-26-1-13-18
  53. Olsen F.J., Lindberg S., Fritz-Hansen T., Modin D., Pedersen S., Iversen A. et al. Prognostic value and interplay between myocardial tissue velocities in patients undergoing coronary artery bypass grafting. Am. J. Cardiol. 2020; 144: 37–45.
  54. Aggarwal R., Potel K.N., Shao A., So S.W., Swingen C., Reyes C.P. et al. An adjuvant stem cell patch with coronary artery bypass graft surgery improves diastolic recovery in porcine hibernating myocardium. Int. J. Mol. Sci. 2023; 24 (6): 5475. DOI: 10.3390/ijms24065475
  55. Khedr W.E., Elashmawy H., Alawady S., Attia A.E., Salama S.R., Helmy E.D., Mahmoud A.E. Echocardiographic assessment of diastolic dysfunction and the efficacy of ivabradine therapy post-CABG surgery. J. Acute Care Resuscitat. 2024; 1 (3): 80–85. DOI: 10.4103/jacresus.jacresus_15_24
  56. Brown J.A., Yousef S., Zhu J., Thoma F., Serna-Gallegos D., Joshi R. et al. The long-term impact of diastolic dysfunction after routine cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2023; 37 (6): 927–932. DOI: 10.1053/j.jvca.2023.01.036

About Authors

  • Ulnara M. Ulukhanova, Postgraduate student 2nd year; ORCID
  • Elmira U. Asymbekova, Dr. Med. Sci., Senior Researcher; ORCID
  • Dzhamshed Kh. Kamardinov, Dr. Med. Sci., Сardiologist; ORCID
  • Yuriy I. Buziashvili, Head of the Department of Clinical Diagnostic Department; ORCID

 If you found mistakes, select text and press Alt+A