Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Perioperative genomics: methodological approaches, genetic variability and response to surgical injury. Part 1

Authors: Koksheneva I.V., Zakaraya I.T.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2021-18-1-5-15

UDC: 576.315.42-089

Link: Clinical Physiology of Blood Circulaiton. 2021; 1 (18): 5-15

Quote as: Koksheneva I.V., Zakaraya I.T. Perioperative genomics: methodological approaches, genetic variability and response to surgical injury. Part 1. Clinical Physiology of Circulation. 2021; 18 (1): 5–15 (in Russ.). DOI: 10.24022/1814-6910-2021-18-1-5-15

Received / Accepted:  22.10.2020 / 03.11.2020

Download
Full text:  

Abstract

Currently, there is an ever wider translation of genomic technologies into the fields of medicine related to the perioperative management of patients, a new discipline is being formed – perioperative genomics. The introduction of genomic data into clinical practice will make it possible in the long term to identify patients with "vulnerable points", which can become an important aspect of perioperative management (preoperative preparation of organs and systems for the forthcoming operation, postoperative monitoring). And also provide additional information for choosing a treatment method (endovascular intervention, surgery on a beating heart or using extracorporeal circulation), choosing the type of coronary conduit, choosing the optimal drug therapy regimen in the postoperative period. To integrate the results of genetic studies into clinical practice, clinicians must understand the patterns of changes in the human genome, the principles of analysis of gene expression. The article discusses general genetic/genomic concepts, highlights the current and future possibilities of using genomic technologies to stratify perioperative risk, predict the results of surgical treatment, and identify new directions for perioperative organ protection.

References

  1. Podgoreanu M.V., Schwinn D.A. New paradigms in cardiovascular medicine: emerging technologies and practices: perioperative genomics. J. Am. Coll. Cardiol. 2005; 46 (11): 1965–77. DOI: 10.1016/j.jacc.2005. 08.040
  2. Nagele P. Perioperative genomics. Best. Pract. Res. Clin. Anaesthesiol. 2011; 25 (4): 549–55. DOI: 10.1016/j.bpa.2011.09.001
  3. Бузиашвили Ю.И., Кокшенева И.В., Абуков С.Т., Сандухадзе Б.Р Значение генетического полиморфизма медиаторов воспалительного ответа в развитии осложнений после кардиохирургических операций (обзор литературы). Кардиология и сердечно-сосудистая хирургия. 2016; 9 (1): 13–9.
  4. Sigurdsson M.I., Muehlschlegel J.D. Perioperative genomics: coming soon to (operating) theatres near you. Can. J. Anaesth. 2016; 63 (4): 382–5. DOI: 10.1007/s12630-015-0577-7
  5. Gabriel R.A., Burton B.N., Urman R.D., Waterman R.S. Genomics testing and personalized medicine in the preoperative setting. Surg. Oncol. Clin. N. Am. 2020; 29 (1): 73–86. DOI: 10.1016/j.soc.2019.08.006
  6. Bain C.R., Shaw A.D. Genetics and epigenetics in perioperative medicine. Curr. Opin. Crit. Care. 2012; 18 (5): 548–54. DOI: 10.1097/MCC.0b013e328357af6d
  7. Muehlschlegel J.D., Perry T.E., Liu K.-Yu., Fox A.A., Collard Ch.D., Shernan S.K., Body S.C. Heart-type fatty acid binding protein is an independent predictor of death and ventricular dysfunction after coronary artery bypass graft surgery. Anesth. Analg. 2010; 111 (5): 1101–9. DOI: 10.1213/ANE.0b013e3181dd9516
  8. Stranger B.E., Nica A.C., Forrest M.S., Dimas A., Bird C.P., Beazley C. et al. Population genomics of human gene expression. Nat. Genet. 2007; 39 (10): 1217–24. DOI: 10.1038/ng2142
  9. Kessler C. Genomics and precision medicine: implications for critical care. AACN Adv. Crit. Care. 2018; 29 (1): 28–35. DOI: 10.4037/aacnacc2018521 10. Feezor R.J., Baker H.V., Xiao W., Lee W.A., Huber T.S., Mindrinos M. et al. Genomic and proteomic determinants of outcome in patients undergoing thoracoabdominal aortic aneurysm repair. J. Immunol. 2004; 172 (11): 7103–9. DOI: 10.4049/jimmunol.172.11.7103
  10. Tomic V., Russwurm S., Möller E., Claus R.A., Blaess M., Brunkhorst F. et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005; 112 (19): 2912–20. DOI: 10.1161/CIRCULATIONAHA.104.531152
  11. Sehl P.D., Tai J.T., Hillan K.J., Brown L.A., Goddard A., Yang R., Lowe D.G. Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation. 2000; 101 (16): 1990–9. DOI: 10.1161/01.cir.101.16.1990
  12. Depre C., Tomlinson J.E., Kudej R.K., Gaussin V., Thompson E., Kim S.J. et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc. Natl. Acad. Sci. USA. 2001; 98 (16): 9336–41. DOI: 10.1073/pnas.1
  13. Ruel M., Bianchi C., Khan T.A., Xu S., Liddicoat J.R., Voisine P. et al. Gene expression profile after cardiopulmonary bypass and cardioplegic arrest. J. Thorac. Cardiovasc. Surg. 2003; 126 (5): 1521–30. DOI: 10.1016/s0022-5223(03)00969-3
  14. Sergeev P., da Silva R., Lucchinetti E., Zaugg K., Pasch T., Schaub M.C., Zaugg M. Trigger-dependent gene expression profiles in cardiac preconditioning: evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology. 2004; 100 (3): 474–88. DOI: 10.1097/00000542-200403000-00005
  15. Lucchinetti E., Aguirre J., Feng J., Zhu M., Suter M., Spahn D.R. et al. Molecular evidence of late preconditioning after sevoflurane inhalation in healthy volunteers. Anesth. Analg. 2007; 105 (3): 629–40. DOI: 10.1213/01.ane.0000278159.88636.aa
  16. Kalenka A., Hinkelbein J., Feldmann R.E., Kuschinsky W., Waschke K.F., Maurer M.H. The effects of sevoflurane anesthesia on rat brain proteins: a proteomic time-course analysis. Anesth. Analg. 2007; 104 (5): 1129–35. DOI: 10.1213/01.ane.0000260799.37107.e6
  17. Sheikh A.M., Barrett C., Villamizar N., Alzate O., Miller S., Shelburne J. et al. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. J. Thorac. Cardiovasc. Surg. 2006; 132 (4): 820–8. DOI: 10.1016/j.jtcvs.2006.07.002
  18. Fakhri D., Djauzi S., Murni T.W., Rachmat J., Harahap A.R., Rahayuningsih S.E. et al. Genetic polymorphism in postoperative sepsis after open heart surgery in infants. Asian Cardiovasc. Thorac. Ann. 2016; 24 (4): 326–31. DOI: 10.1177/0218492316640128
  19. Nakada T., Takahashi W., Nakada E., Shimada T., Russell J.A. Genetic polymorphisms in sepsis and cardiovascular disease: do similar risk genes suggest similar drug targets? Chest. 2019; 155 (6): 1260–71. DOI: 10.1016/j.chest.2019.01.003
  20. Prucha M., Ruryk A., Boriss H., Möller E., Zazula R., Herold I. et al. Expression profiling: toward an application in sepsis diagnostics. Shock. 2004; 22 (1): 29–33. DOI: 10.1097/01.shk.0000129199.30965.02
  21. Leikauf G.D., McDowell S.A., Wesselkamper S.C., Hardie W.D., Leikauf J.E., Korfhagen T.R., Prows D.R. Acute lung injury: functional genomics and genetic susceptibility. Chest. 2002; 121: 70S–5S. DOI: 10.1378/chest.121.3_suppl.70s
  22. Dasu M.R., Cobb J.P., Laramie J.M., Chung T.P., Spies M., Barrow R.E. Gene expression profiles of livers from thermally injured rats. Gene. 2004; 327 (1): 51–60. DOI: 10.1016/j.gene.2003.11.015
  23. Tang B.M., Huang S.J., McLean A.S. Genome-wide transcription profiling of human sepsis: a systematic review. Crit. Care. 2010; 14 (6): R237. DOI: 10.1186/cc9392 14 Reviews Clinical Physiology of Circulation. 2021; 18 (1). DOI: 10.24022/1814-6910-2021-18-1-5-1525. Calvano S.E., Xiao W., Richards D.R., Felciano R.M., Baker H.V., Cho R.J. et al. A network-based analysis of systemic inflammation in humans. Nature. 2005; 437 (7061): 1032–37. DOI: 10.1038/nature03985
  24. Laudanski K., Miller-Graziano C., Xiao W., Mindrinos M.N., Richards D.R., De A. et al. Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways. Proc. Natl. Acad. Sci. USA. 2006; 103 (42): 15564–9. DOI: 10.1073/pnas.0607028103
  25. Fessler M.B., Malcolm K.C., Duncan M.W., Worthen G.S. A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J. Biol. Chem. 2002; 277 (35): 31291–302. DOI: 10.1074/jbc.M200755200
  26. Fessler М.В., Arndt P.G., Just I., Nick J.A., Malcolm K.C., Worthen G.S. Dual role for RhoA in suppression and induction of cytokines in the human neutrophil. Blood. 2007; 109 (3): 1248–56. DOI: 10.1182/blood-2006-03-012898
  27. Kalenka A., Feldmann R.E., Otero K., Maurer M.H., Waschke K.F., Fiedler F. Changes in the serum proteome of patients with sepsis and septic shock. Anesth. Analg. 2006; 103 (6): 1522–6. DOI: 10.1213/01.ane.0000242533.59457.70
  28. Кокшенёва И.В. Системные и генетические подходы в сердечно-сосудистой медицине: возможности и перспективы. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2018; 19 (4): 439–46. DOI: 10.24022/1810-0694-2018-19-4-439-446
****
  1. Podgoreanu M.V., Schwinn D.A. New paradigms in cardiovascular medicine: emerging technologies and practices: perioperative genomics. J. Am. Coll. Cardiol. 2005; 46 (11): 1965–77. DOI: 10.1016/j.jacc.2005. 08.040
  2. Nagele P. Perioperative genomics. Best. Pract. Res. Clin. Anaesthesiol. 2011; 25 (4): 549–55. DOI: 10.1016/j.bpa.2011.09.001
  3. Buziashvili Yu.I., Koksheneva I.V., Abukov S.T., Sandukhadze B.R. The value of genetic polymorphism of inflammatory response mediators in the development of complications after cardiac surgery (literature review). Cardiology and Cardiovascular Surgery. 2016; 9 (1): 13—9 (in Russ.).
  4. Sigurdsson M.I., Muehlschlegel J.D. Perioperative genomics: coming soon to (operating) theatres near you. Can. J. Anaesth. 2016; 63 (4): 382–5. DOI: 10.1007/s12630-015-0577-7
  5. Gabriel R.A., Burton B.N., Urman R.D., Waterman R.S. Genomics testing and personalized medicine in the preoperative setting. Surg. Oncol. Clin. N. Am. 2020; 29 (1): 73–86. DOI: 10.1016/j.soc.2019.08.006
  6. Bain C.R., Shaw A.D. Genetics and epigenetics in perioperative medicine. Curr. Opin. Crit. Care. 2012; 18 (5): 548–54. DOI: 10.1097/MCC.0b013e328357af6d
  7. Muehlschlegel J.D., Perry T.E., Liu K.-Yu., Fox A.A., Collard Ch.D., Shernan S.K., Body S.C. Heart-type fatty acid binding protein is an independent predictor of death and ventricular dysfunction after coronary artery bypass graft surgery. Anesth. Analg. 2010; 111 (5): 1101–9. DOI: 10.1213/ANE.0b013e3181dd9516
  8. Stranger B.E., Nica A.C., Forrest M.S., Dimas A., Bird C.P., Beazley C. et al. Population genomics of human gene expression. Nat. Genet. 2007; 39 (10): 1217–24. DOI: 10.1038/ng2142
  9. Kessler C. Genomics and precision medicine: implications for critical care. AACN Adv. Crit. Care. 2018; 29 (1): 28–35. DOI: 10.4037/aacnacc2018521 10. Feezor R.J., Baker H.V., Xiao W., Lee W.A., Huber T.S., Mindrinos M. et al. Genomic and proteomic determinants of outcome in patients undergoing thoracoabdominal aortic aneurysm repair. J. Immunol. 2004; 172 (11): 7103–9. DOI: 10.4049/jimmunol.172.11.7103
  10. Tomic V., Russwurm S., Möller E., Claus R.A., Blaess M., Brunkhorst F. et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005; 112 (19): 2912–20. DOI: 10.1161/CIRCULATIONAHA.104.531152
  11. Sehl P.D., Tai J.T., Hillan K.J., Brown L.A., Goddard A., Yang R., Lowe D.G. Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation. 2000; 101 (16): 1990–9. DOI: 10.1161/01.cir.101.16.1990
  12. Depre C., Tomlinson J.E., Kudej R.K., Gaussin V., Thompson E., Kim S.J. et al. Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc. Natl. Acad. Sci. USA. 2001; 98 (16): 9336–41. DOI: 10.1073/pnas.1
  13. Ruel M., Bianchi C., Khan T.A., Xu S., Liddicoat J.R., Voisine P. et al. Gene expression profile after cardiopulmonary bypass and cardioplegic arrest. J. Thorac. Cardiovasc. Surg. 2003; 126 (5): 1521–30. DOI: 10.1016/s0022-5223(03)00969-3
  14. Sergeev P., da Silva R., Lucchinetti E., Zaugg K., Pasch T., Schaub M.C., Zaugg M. Trigger-dependent gene expression profiles in cardiac preconditioning: evidence for distinct genetic programs in ischemic and anesthetic preconditioning. Anesthesiology. 2004; 100 (3): 474–88. DOI: 10.1097/00000542-200403000-00005
  15. Lucchinetti E., Aguirre J., Feng J., Zhu M., Suter M., Spahn D.R. et al. Molecular evidence of late preconditioning after sevoflurane inhalation in healthy volunteers. Anesth. Analg. 2007; 105 (3): 629–40. DOI: 10.1213/01.ane.0000278159.88636.aa
  16. Kalenka A., Hinkelbein J., Feldmann R.E., Kuschinsky W., Waschke K.F., Maurer M.H. The effects of sevoflurane anesthesia on rat brain proteins: a proteomic time-course analysis. Anesth. Analg. 2007; 104 (5): 1129–35. DOI: 10.1213/01.ane.0000260799.37107.e6
  17. Sheikh A.M., Barrett C., Villamizar N., Alzate O., Miller S., Shelburne J. et al. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. J. Thorac. Cardiovasc. Surg. 2006; 132 (4): 820–8. DOI: 10.1016/j.jtcvs.2006.07.002
  18. Fakhri D., Djauzi S., Murni T.W., Rachmat J., Harahap A.R., Rahayuningsih S.E. et al. Genetic polymorphism in postoperative sepsis after open heart surgery in infants. Asian Cardiovasc. Thorac. Ann. 2016; 24 (4): 326–31. DOI: 10.1177/0218492316640128
  19. Nakada T., Takahashi W., Nakada E., Shimada T., Russell J.A. Genetic polymorphisms in sepsis and cardiovascular disease: do similar risk genes suggest similar drug targets? Chest. 2019; 155 (6): 1260–71. DOI: 10.1016/j.chest.2019.01.003
  20. Prucha M., Ruryk A., Boriss H., Möller E., Zazula R., Herold I. et al. Expression profiling: toward an application in sepsis diagnostics. Shock. 2004; 22 (1): 29–33. DOI: 10.1097/01.shk.0000129199.30965.02
  21. Leikauf G.D., McDowell S.A., Wesselkamper S.C., Hardie W.D., Leikauf J.E., Korfhagen T.R., Prows D.R. Acute lung injury: functional genomics and genetic susceptibility. Chest. 2002; 121: 70S–5S. DOI: 10.1378/chest.121.3_suppl.70s
  22. Dasu M.R., Cobb J.P., Laramie J.M., Chung T.P., Spies M., Barrow R.E. Gene expression profiles of livers from thermally injured rats. Gene. 2004; 327 (1): 51–60. DOI: 10.1016/j.gene.2003.11.015
  23. Tang B.M., Huang S.J., McLean A.S. Genome-wide transcription profiling of human sepsis: a systematic review. Crit. Care. 2010; 14 (6): R237. DOI: 10.1186/cc9392 14 Reviews Clinical Physiology of Circulation. 2021; 18 (1). DOI: 10.24022/1814-6910-2021-18-1-5-1525. Calvano S.E., Xiao W., Richards D.R., Felciano R.M., Baker H.V., Cho R.J. et al. A network-based analysis of systemic inflammation in humans. Nature. 2005; 437 (7061): 1032–37. DOI: 10.1038/nature03985
  24. Laudanski K., Miller-Graziano C., Xiao W., Mindrinos M.N., Richards D.R., De A. et al. Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways. Proc. Natl. Acad. Sci. USA. 2006; 103 (42): 15564–9. DOI: 10.1073/pnas.0607028103
  25. Fessler M.B., Malcolm K.C., Duncan M.W., Worthen G.S. A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J. Biol. Chem. 2002; 277 (35): 31291–302. DOI: 10.1074/jbc.M200755200
  26. Fessler М.В., Arndt P.G., Just I., Nick J.A., Malcolm K.C., Worthen G.S. Dual role for RhoA in suppression and induction of cytokines in the human neutrophil. Blood. 2007; 109 (3): 1248–56. DOI: 10.1182/blood-2006-03-012898
  27. Kalenka A., Feldmann R.E., Otero K., Maurer M.H., Waschke K.F., Fiedler F. Changes in the serum proteome of patients with sepsis and septic shock. Anesth. Analg. 2006; 103 (6): 1522–6. DOI: 10.1213/01.ane.0000242533.59457.70
  28. Koksheneva I.V. Systemic and genetic approaches in cardiovascular medicine: opportunities and perspectives. Bulletin of Bakoulev Center. Cardiovascular Deseases. 2018; 19 (4): 439–46 (in Russ.). DOI: 10.24022/1810-0694-2018-19-4-439-446

About Authors

  • Inna V. Koksheneva, Dr. Med. Sc., Senior Researcher; ORCID
  • Irakliy T. Zakaraya, Junior Researcher

 If you found mistakes, select text and press Alt+A