Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Biomarkers as predictors of early recurrence of atrial fibrillation after radiofrequency ablation

Authors: Akildzhonov F.R., Asymbekova E.U., Kamardinov D.Kh., Sherstyannikova O.M., Songurov R.N.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814- 6910-2021-18-2-139-148

UDC: 616.125-008.313-073.43-089

Link: Clinical Physiology of Blood Circulaiton. 2021; 2 (18): 139-148

Quote as: Akildzhonov F.R., Asymbekova E.U., Kamardinov D.Kh., Sherstyannikova O.M., Songurov R.N. Biomarkers as predictors of early recurrence of atrial fibrillation after radiofrequency ablation. Clinical Physiology of Circulation. 2021; 18 (2): 139–48 (in Russ.). DOI: 10.24022/1814-6910-2021-18-2-139-148

Received / Accepted:  06.04.2021 / 01.05.2021

Download
Full text:  

Abstract

A growing body of evidence supports the strong predictive value of biomarkers in cardiovascular disease. Thus, despite the convincing results of large multicenter randomized studies, many aspects of the interaction of biomarkers remain unclear and require further research. To date, it is known that some biomarkers reflect the pathophysiological development of atrial fibrillation (AF), while others can be used as markers to calculate the estimated risk, and the study of biomarkers will help in a deeper understanding of the pathophysiology of AF, the development of a treatment strategy, and possibly even early detection of the disease. Vigorous research on promising new biomarkers is ongoing. Nevertheless, biomarkers are gaining increasing clinical significance and may play a key role in the future in refining the assessment of the clinical risk of AF recurrence after catheter ablation. This review presents current biomarker data as predictors of early AF recurrence after radiofrequency ablation, although the pathophysiology of many biomarkers remains unclear. Keywords: radiofrequency ablation, atrial fibrillation, natriuretic peptides.

References

  1. Ding W., Harrison S., Gupta D., Lip G., Lane D. Stroke and bleeding risk assessments in patients with atrial fibrillation: concepts and controversies. Front. Med. (Lausanne). 2020; 7: 54. DOI: 10.3389/fmed.2020.00054
  2. Nattel S., Guasch E., Savelieva I. Early management of atrial fibrillation to prevent cardiovascular complications. Eur. Heart J. 2014; 35 (22): 1448–56. DOI: 10.1093/eurheartj/ehu028
  3. Lau D., Linz D., Sanders P. New findings in atrial fibrillation mechanisms. Card. Electrophysiol. Clin. 2019; 11 (4): 563–71. DOI: 10.1016/j.ccep.2019.08.007
  4. Teh A., Kistler P., Lee G. Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. J. Cardiovasc. Electrophysiol. 2012; 23 (3): 232–8. DOI: 10.1111/j.1540-8167.2011.02178.x
  5. Goette A., Kalman J., Aguinaga L. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace. 2016; 18 (10): 1455–90. DOI: 10.1093/europace/euw161
  6. Kirchhof P., Benussi S., Kotecha D. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016; 37 (38): 2893–962. DOI: 10.1093/eurheartj/ehw210
  7. Mody B., Raza A., Jacobson J. Ablation of long-standing persistent atrial fibrillation. Ann. Transl. Med. 2017; 5 (15): 305. DOI: 10.21037/atm.2017.05.21
  8. Andrade J., Champagne J., Deyell M. A randomized clinical trial of early invasive intervention for atrial fibrillation (EARLY-AF) – methods and rationale. Am. Heart J. 2018; 206: 94–104. DOI: 10.1016/j.ahj.2018.05.020
  9. Haїssaguerre M., Jaїs P., Shah D. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998; 339 (10): 659–66. DOI: 10.1056/NEJM199809033391003
  10. Hindricks G., Potpara T., Dagres N. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021; 42 (5): 373–498. DOI: 10.1093/eurheartj/ehaa612
  11. Li A., Chen Y., Wang W., Su L., Ling Z. Association of clinical predictors with recurrence of atrial fibrillation after catheter ablation. Ann. Noninv. Electrocardiol. 2020; 25 (6): e12787. DOI: 10.1111/anec.12787
  12. Liao Y., Liao J., Lo L. Left atrial size and left ventricular end-systolic dimension predict the progression of paroxysmal atrial fibrillation after catheter ablation. J. Cardiovasc. Electrophysiol. 2017; 28 (1): 23–30. DOI: 10.1111/jce.13115
  13. Mueller T., Dieplinger B. Soluble ST2 and Galectin-3: what we know and don't know analytically. EJIFCC. 2016; 27 (3): 224–37.
  14. Tsigkou V., Siasos G., Bletsa E. The predictive role for ST2 in patients with acute coronary syndromes and heart failure. Curr. Med. Chem. 2020; 27 (27): 4479–93. DOI: 10.2174/0929867326666191016121630
  15. O'Connor C., Whellan D., Lee K. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009; 301 (14): 1439–50. DOI: 10.1001/jama.2009.454
  16. McCarthy C.P., Januzzi J.L. Jr. Soluble ST2 in heart failure. Heart Fail. Clin. 2018; 14 (1): 41–8. DOI: 10.1016/j.hfc.2017.08.005
  17. Liu H., Wang K., Lin Y. Role of sST2 in predicting recurrence of atrial fibrillation after radiofrequency catheter ablation. Pacing Clin. Electrophysiol. 2020; 43 (11): 1235–41. DOI: 10.1111/pace.14029
  18. Johner N., Namdar M., Shah D. Individualised approaches for catheter ablation of AF: patient selection and procedural endpoints. Arrhythm. Electrophysiol. Rev. 2019; 8 (3): 184–90. DOI: 10.15420/aer.2019.33.2
  19. McGann C., Akoum N., Patel A. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol. 2014; 7 (1): 23–30. DOI: 10.1161/CIRCEP.113.000689
  20. Korodi S., Toganel R., Benedek T. Impact of inflammation-mediated myocardial fibrosis on the risk of recurrence after successful ablation of atrial fibrillation – the FIBRO-RISK study: Protocol for a non-randomized clinical trial. Medicine (Baltimore). 2019; 98 (9): e14504. DOI: 10.1097/MD.0000000000014504
  21. Rienstra M., Yin X., Larson M. Relation between soluble ST2, growth differentiation factor-15, and highsensitivity troponin I and incident atrial fibrillation. Am. Heart J. 2014; 167 (1): 109–15.e2. DOI: 10.1016/j.ahj.2013.10.003
  22. Okar S., Kaypakli O., S, ahin D., Koc, M. Fibrosis marker soluble ST2 predicts atrial fibrillation recurrence after cryoballoon catheter ablation of nonvalvular paroxysmal atrial fibrillation. Korean Circ. J. 2018; 48 (10): 920–9. DOI: 10.4070/kcj.2018.0047
  23. D’Ascenzo F., Corleto A., Biondi-Zoccai G. Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation: a meta-analysis. Int. J. Cardiol. 2013; 167 (5): 1984–9. DOI: 10.1016/j.ijcard.2012.05.008
  24. Zghaib T., Keramati A., Chrispin J. Multimodal examination of atrial fibrillation substrate: correlation of left atrial bipolar voltage using multi-electrode fast automated mapping, point-by-point mapping, and magnetic resonance image intensity ratio. JACC Clin. Electrophysiol. 2018; 4 (1): 59–68. DOI: 10.1016/j.jacep.2017.10.010
  25. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A. et al. Четвертое универсальное определение инфаркта миокарда (2018). Российский кардиологический журнал. 2019; 24 (3): 107–38. DOI: 10.15829/1560-4071-2019-3-107-138 [Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A. et al. Fourth universal definition of myocardial infarction (2018). Russian Journal of Cardiology. 2019; 24 (3): 107–38 (in Russ.). DOI: 10.15829/1560-4071-2019-3-107-138
  26. Fried L., Borhani N., Enright P. The cardiovascular health study: design and rationale. Ann. Epidemiol. 1991; 1 (3): 263–76. DOI: 10.1016/1047-2797(91)90005-w
  27. Zeljkovic I., Knecht S., Pavlovic N. High-sensitive cardiac troponin T as a predictor of efficacy and safety after pulmonary vein isolation using focal radiofrequency, multielectrode radiofrequency and cryoballoon ablation catheter. Open Heart. 2019; 6 (1): e000949. DOI: 10.1136/openhrt-2018-000949
  28. Casella M., Dello Russo A., Russo E. Biomarkers of myocardial injury with different energy sources for atrial fibrillation catheter ablation. Cardiol. J. 2014; 21 (5): 516–23. DOI: 10.5603/CJ.a2013.0153
  29. Kizilirmak F., Gokdeniz T., Gunes H. Myocardial injury biomarkers after radiofrequency catheter and cryoballoon ablation for atrial fibrillation and their impact on recurrence. Kardiol. Pol. 2017; 75 (2): 126–34. DOI: 10.5603/KP.a2016.0089
  30. Budzianowski J., Hiczkiewicz J., Burchardt P. Predictors of atrial fibrillation early recurrence following cryoballoon ablation of pulmonary veins using statistical assessment and machine learning algorithms. Heart Vessels. 2019; 34 (2): 352–9. DOI: 10.1007/s00380-018-1244-z
  31. Aksu T., Golcuk S., Guler T., Yalin K., Erden I. Prediction of mid-term outcome after cryo-balloon ablation of atrial fibrillation using post-procedure highsensitivity troponin level. Cardiovasc. J. Afr. 2015; 26 (4): 165–70. DOI: 10.5830/CVJA-2015-027
  32. Lim H., Schultz C., Dang J. Time course of inflammation, myocardial injury, and prothrombotic response after radiofrequency catheter ablation for atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2014; 7 (1): 83–9. DOI: 10.1161/CIRCEP.113.000876
  33. Ponikowski P., Voors A., Anker S. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016; 37 (27): 2129–200. DOI: 10.1093/eurheartj/ehw128
  34. Silvet H., Young-Xu Y., Walleigh D., Ravid S. Brain natriuretic peptide is elevated in outpatients with atrial fibrillation. Am. J. Cardiol. 2003; 92 (9): 1124–7. DOI: 10.1016/j.amjcard.2003.07.010
  35. Papageorgiou N., Providencia R., Falconer D. Predictive role of BNP/NT-proBNP in non-heart failure patients undergoing catheter ablation for atrial fibrillation: an updated systematic review. Curr. Med. Chem. 2020; 27 (27): 4469–78. DOI: 10.2174/0929867326666191213095554
  36. Anselmino M., Matta M., D’Ascenzo F. Catheter ablation of atrial fibrillation in patients with left ventricular systolic dysfunction: a systematic review and metaanalysis. Circ. Arrhythm. Electrophysiol. 2014; 7 (6): 1011–8. DOI: 10.1161/CIRCEP.114.001938
  37. Lee S., Tai C., Hsieh M. Predictors of early and late recurrence of atrial fibrillation after catheter ablation of paroxysmal atrial fibrillation. J. Interv. Card. Electrophysiol. 2004; 10 (3): 221–6. DOI: 10.1023/B:JICE.0000026915.02503.92
  38. Chua W., Easter C., Guasch E. Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset. BMC Cardiovasc. Disord. 2019; 19 (1): 120. DOI: 10.1186/s12872-019-1105-4
  39. Dretzke J., Chuchu N., Agarwal R. Predicting recurrent atrial fibrillation after catheter ablation: a systematic review of prognostic models. Europace. 2020; 22 (5): 748–60. DOI: 10.1093/europace/euaa041
  40. Clementy N., Piver E., Bisson A. Galectin-3 in atrial fibrillation: mechanisms and therapeutic implications. Int. J. Mol. Sci. 2018; 19 (4): 976. DOI: 10.3390/ijms19040976
  41. Gong M., Cheung A., Wang Q. Galectin-3 and risk of atrial fibrillation: a systematic review and meta-analysis. J. Clin. Lab. Anal. 2020; 34 (3): e23104. DOI: 10.1002/jcla.23104
  42. Ho J., Yin X., Levy D. Galectin 3 and incident atrial fibrillation in the community. Am. Heart J. 2014; 167 (5): 729–34.e1. DOI: 10.1016/j.ahj.2014.02.009
  43. Zhang G., Wu Y. Circulating galectin-3 and atrial fibrillation recurrence after catheter ablation: a meta-analysis. Cardiovasc. Ther. 2019; 2019: 4148129. DOI: 10.1155/2019/4148129
  44. Kocyigit D., Gurses K., Yalcin M. Serum galectin-3 level as a marker of thrombogenicity in atrial fibrillation. J. Clin. Lab. Anal. 2017; 31 (6): 22120. DOI: 10.1002/jcla.22120
  45. Pranata R., Yonas E., Chintya V., Tondas A., Raharjo S. Serum galectin-3 level and recurrence of atrial fibrillation post-ablation – systematic review and meta-analysis. Indian Pacing Electrophysiol. J. 2020; 20 (2): 64–9. DOI: 10.1016/j.ipej.2020.02.002
  46. Clementy N., Benhenda N., Piver E. Serum galectin-3 levels predict recurrences after ablation of atrial fibrillation. Sci Rep. 2016; 6: 34357. DOI: 10.1038/srep34357
  47. Huang Z., Liang X., Wang W. Relationship between plasma cancer antigen (CA)-125 level and one-year recurrence of atrial fibrillation after catheter ablation. Clin. Chim. Acta. 2020; 502: 201–6. DOI: 10.1016/j.cca.2019.11.001
  48. Yucel H., Kaya H., Zorlu A. Cancer antigen 125 levels and increased risk of new-onset atrial fibrillation. Herz. 2015; 40 (Suppl. 2): 119–24. DOI: 10.1007/s00059- 014-4148- 4

About Authors

  • Firdavsdzhon R. Akildzhonov, Resident Physician; ORCID
  • El’mira U. Asymbekova, Dr. Med. Sc., Leading Researcher; ORCID
  • Dzhamshed Kh. Kamardinov, Dr. Med. Sc., Cardiologist; ORCID
  • Ol’ga M. Sherstyannikova, Cand. Med. Sc., Researcher; ORCID
  • Rashid N. Songurov, Cardiologist; ORCID

 If you found mistakes, select text and press Alt+A