Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Variety of contemporary predictors of progression and ruptureof abdominal aortic aneurysm

Authors: T.R. Tibua, V.S. Arakelyan, A.Yu. Gorodkov

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2019-16-1-11-19

UDC: 616.136-007.64-007.251

Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (1): 11-19

Quote as: Tibua T.R., Arakelyan V.S., Gorodkov A.Yu. Variety of contemporary predictors of progression and rupture of abdominal aortic aneurysm. Clinical Physiology of Circulation. 2019; 16 (1): 11–9 (in Russ.). DOI: 10.24022/1814-6910- 2019-16-1-11-19

Received / Accepted:  10.01.2019/11.01.2019

Download
Full text:  

Abstract

The abdominal aortic aneurysm (AAA) are 29–37.8% among arterial aneurysms of all localizations. In 95% of patients with aneurysms are located in infrarenal portion of the abdominal aorta. Complications of AAA include thrombosis of aneurysm, peripheral embolization, formation of internal fistulas and rupture of aneurysm. According to various authors, in this group of patients, rupture of aortic aneurysm is one of the main causes of death with mortality of 70–95%. The decision for emergency surgery or the possibility of waiting management tactics are based on such predictors of rupture of aortic aneurysm as the transverse diameter and growth rate, which is insufficient to determine the patient's treatment plan in the future. The article presents an overview of the information available in the national and foreign literature on the role of biological, geometric and biomechanical parameters as predictor of abdominal aortic aneurysm rupture. These factors make it possible to determine the general condition of the aneurysm and to quantify its evolution.

References

  1. Chaikof E.L., Dalman R.L., Eskandari M.K., Jackson B.M., Lee W.A., Mansour M.A. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67 (1): 2–77. DOI: 10.1016/j.jvs.2017.10.044
  2. Nagashima H., Aoka Y., Sakomura Y., Uto K., Sakuta A., Aomi S. et al. Matrix metalloproteinase 2 is suppressed by trapidil, a CD40-CD40 ligand pathway inhibitor, in human abdominal aortic aneurysm wall. J. Vasc. Surg. 2004; 39: 447–53. DOI: 10.1016/j.jvs.2003.07.005
  3. Choke E., Cockerill G., Wilson W.R.W., Sayed S., Dawson J., Loftus I. et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 2005; 30: 227–44. DOI: 10.1016/j.ejvs.2005.03.009
  4. Satta J., Laara E., Juvonen T. Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J. Vasc. Surg. 1996; 23: 737–9. DOI: 10.1016/s0741-5214(96)80062-0
  5. Schurink G.W.H., van Baalen J.M., Visser M.J.T., van Bockel J.H. Thrombus within an aortic aneurysm does not reduce pressure on the aneurismal wall. J. Vasc. Surg. 2000; 31: 501–6. DOI: 10.1067/mva.2000.103693
  6. Ashworth J.L., Murphy G., Rock M.J., Sherratt M.J., Shapiro S.D., Shuttleworth C.A. et al. Fibrilin degradation by matrix metalloproteinases: implications for connective tissue remodeling. Biochem J. 1999; 340: 171–81. DOI: 10.1042/bj3400171
  7. Johnson C., Galis Z.S. Matrix metalloproteinase-2 and 9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Обзоры 17 Thromb. Vasc. Biol. 2004; 24: 54–60. DOI: 10.1161/01.atv.0000100402.69997.c3
  8. Petersen E., Wagberg F., Angquist K.A. Proteolysis of the abdominal aortic aneurysm wall and the association with rupture. Eur. J. Vasc. Endovasc. Surg. 2002; 23: 153–7. DOI: 10.1053/ejvs.2001.1572
  9. Freestone T., Turner R.J., Coady A., Higman D.J., Greenhalgh R.M., Powell J.T. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1145–51. DOI: 10.1161/01.atv.15.8.1145
  10. Thompson M., Cockerill G. Matrix metalloproteinase- 2: the forgotten enzyme in aneurysm pathogenesis. Ann. N. Y. Acad. Sci. 2006; 1085: 170–4. DOI: 10.1196/annals.1383.034
  11. Silence J., Collen D., Lijnen H.R. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase- 1 (TIMP-1) gene. Circ. Res. 2002; 90: 897–903. DOI: 10.1161/01.res.0000016501.56641.83
  12. Eskandari M.K., Vijungco J.D., Flores A., Borensztajn J., Shively V., Pearce W.H. Enhanced abdominal aortic aneurysm in TIMP-1-deficient mice. J. Surg. Res. 2005; 123: 289–93. DOI: 10.1016/j.jss.2004.07.247
  13. Hua J., Mower W.R. Simple geometric characteristics fail to reliable predict abdominal aortic aneurysm wall stresses. J. Vasc. Surg. 2001; 34: 308–15. DOI: 10.1067/mva.2001.114815
  14. Vorp D.A., Raghavan M.L., Webster M.W. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J. Vasc. Surg. 1998; 27: 632–9. DOI: 10.1016/s0741-5214(98)70227-7
  15. Sacks M.S., Vorp D.A., Raghavan M.L., Federle M.P., Webster M.W. In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann. Biomed. Eng. 1999; 27 (4): 469–79. DOI: 10.1114/1.202
  16. Fontaine V., Jacob M.P., Houard X., Rossignol P., Plissonnier D., Angles-Cano E. et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am. J. Pathol. 2002; 161: 1701–10. DOI: 10.1016/s0002-9440(10)64447-1
  17. Labruto F., Blomqvist L., Swedenborg J. Imaging the intraluminal thrombus of abdominal aortic aneurysms: techniques, findings, and clinical implications. J. Vasc. Interv. Radiol. 2011; 22: 1069–75. DOI: 10.1016/j.jvir.2011.01.454
  18. Siegel C.L., Cohan R.H., Korobkin M., Alpern M.B., Courneya D.L., Leder R.A. Abdominal aortic aneurysm morphology: CT features in patients with ruptured and non ruptured aneurysms. Am. J. Roentgenol. 1994; 163: 1123–9. DOI: 10.2214/ajr.163.5.7976888
  19. Guimaraes T.A.S., Garcia G.N., Dalio M.B., Bredarioli M., Bezerra C.A.P., Moriya T. Morphological aspects of mural thrombi deposition residual lumen route in infrarenal abdominal aorta aneurisms. Acta Cir. Bras. 2008; 23 (Suppl. 1): 151–6. DOI: 10.1590/s0102-86502008000700024
  20. Roy J., Labruto F., Beckman M.O., Danielson J., Johansson G., Swedenborg J. Bleeding into the intraluminal thrombus in abdominal aortic aneurysms is associated with rupture. J. Vasc. Surg. 2008; 48: 1108–13. DOI: 10.1016/j.jvs.2008.06.063
  21. Simao da Silva E., Rodrigues A.J., Magalhaes Castro de Tolosa E., Rodrigues C.J., Villas Boas do Prado G., Nakamoto J.C. Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study. Cardiovasc. Surg. 2000; 8: 526–32. DOI: 10.1016/s0967-2109(00)00060-0
  22. Vorp D.A., Lee P.C., Wang D.H.J., Makaroun M.S., Nemoto E.M., Ogawa S. et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 2001; 34: 291–9. DOI: 10.1067/mva.2001.114813
  23. Kazi M., Zhu C., Roy J., Paulsson-Berne G., Hamsten A., Swedenborg J. et al. Difference in matrixdegrading protease expression and activity between thrombus-free and thrombuscovered wall of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1341–6. DOI: 10.1161/01.atv.0000166601.49954.21
  24. Wolf Y.G., Thomas W.S., Brennan F.J., Goff W.G., Sise M.J., Bernstein E.F. Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J. Vasc. Surg. 1994; 20: 529–35. DOI: 10.1016/0741-5214(94)90277-1
  25. Wang D.H.J., Makaroun M.S., Webster M.W., Vorp D.A. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 2002; 36: 598–604. DOI: 10.1067/mva.2002.126087
  26. Dobrin P.B. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg. Clin. North. Am. 1989; 69: 687–703. DOI: 10.1016/s0039-6109(16)44876-0
  27. Faggioloi G.L., Stella A., Gargiulo M., Tarantini S., D'Addato M., Ricotta J.J. Morphology of small aneurysms: definition and impact on risk of rupture. Am. J. Surg. 1994; 168: 131–5. DOI: 10.1016/s0002-9610(94)80052-9
  28. Kushihashi T., Munechika H., Matsui S., Moritani T., Horichi Y., Hishida T. CT of abdominal aortic aneurysms, aneurysmal size and thickness of intraaneurysmal thrombus as risk factors of rupture. Nippon Acta Radiol. 1991; 51: 217–9.
  29. Pillari G., Chang J.B., Zito T. Computed tomography of abdominal aortic aneurysm: an in-vivo pathological report with a note on dynamic predictors. Arch. Surg. 1988; 123: 727–32. DOI: 10.1001/archsurg.1988.01400300073012
  30. Martino E. Di, Mantero S., Inzoli F., Melissano G., Astore D., Chiesa R. et al. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterization and structural static computational analysis. Eur. J. Endovasc. Surg. 1998; 15: 290–9. DOI: 10.1016/s1078-5884(98)80031-2
  31. Inzoli F., Boschetti F., Zappa M., Longo T., Fumero R. Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 1993; 7: 667–74. DOI: 10.1016/s0950-821x(05)80714-5
  32. Mower W.R., Quinones W.J., Gambhir S.S. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Surg. 1997; 26: 602–8. DOI: 10.1016/s0741-5214(97)70058-2
  33. Learoyd B.M., Taylor M.G. Alteration with age in the viscoelastic properties of human arterial walls. Circ. Res. 1966; 18: 278–92. DOI: 10.1161/01.res.18.3.278
  34. Imura T., Yamamoto K., Kanamori K., Mikami T., Yasuda H. Non-invasive ultrasonic measurement of the elastic properties of the human abdominal aorta. Cardiovasc. Res. 1986; 20: 208–14. DOI: 10.1093/cvr/20.3.208
  35. Roberts J.C., Moses C., Wilkins R.H. Autopsy studies in atherosclerosis I. Distribution and severity of atherosclerosis in patients dying without morphologic evidence of atherosclerotic catastrophe. Circulation. 1959; 20: 511–9. DOI: 10.1161/01.cir.20.4.511
  36. Fowkes F.G., Macintyre C.A., Ruckley C.V. Increasing incidence of aortic aneurysms in England and Wales. BMJ. 1989; 298: 33–5. DOI: 10.1136/bmj.298.6665.33
  37. MacSweeney S.T.R., Young G., Greenhalgh R.M., Powell J.T. Mechanical properties of the aneurysmal aorta. Br. J. Surg. 1992; 79 (12): 1281–4. DOI: 10.1002/bjs.1800791211
  38. Shang E.K., Nathan D.P., Sprinkle S.R., Vigmostad S.C., Fairman R.M., Bavaria J.E. et al. Peak wall stress predicts expansion rate in descending thoracic aortic aneurysms. Ann. Thorac. Surg. 2013; 95: 593–8. DOI: 10.1016/j.athoracsur.2012.10.025
  39. Vorp D.A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 2007; 40: 1887–902. DOI: 10.1016/j.jbiomech.2006.09.003
  40. Fillinger M.F., Marra S.P., Raghavan M.L., Kennedy F.E. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 2003; 37: 724–32. DOI: 10.1067/mva.2003.213
  41. Kleinstreuer C., Li Z. Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed. Eng. Online. 2006; 5: 19. DOI: 10.1186/1475-925X-5-19
  42. Cappeller W.A., Engelmann H., Blechschmidt S., Wild M., Lauterjung L. Possible objectification of a critical maximum diameter for elective surgery in abdominal aortic aneurysms based on one-and three-dimensional ratios. J. Cardiovasc. Surg. 1997; 38: 623–8.
  43. Wolf Y.G., Thomas W.S., Brennan F.J., Goff W.G., Sise M.J., Bernstein E.F. Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J. Vasc. Surg. 1994; 20: 529–38. DOI: 10.1016/0741-5214(94)90277-1
  44. Limet R., Sakalihassan N., Albert A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 1991; 14: 540–8. DOI: 10.1016/0741-5214(91)90249-t
  45. Fillinger M.F., Raghavan M.L., Marra S.P., Cronenwett J.L., Kennedy F.E. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 2002; 36: 589–97. DOI: 10.1067/mva.2002.125478
  46. Fillinger M.F., Marra S.P., Raghavan M.L., Kennedy F.E. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 2003; 37: 724–32. DOI: 10.1067/mva.2003.213
  47. Hatakeyama T., Shigematsu H., Muto T. Risk factors for rupture of abdominal aortic aneurysm based on three-dimensional study. J. Vasc. Surg. 2001; 33: 453–61. DOI: 10.1067/mva.2001.111731
  48. Cronenwett J.L., Murphy T.F., Zelenock G.B., Whitehouse W.M., Lindenauer S.M., Graham L.M. et al. Actuarial analysis of variables associated with rupture of small abdominal aortic aneurysms. Surgery. 1985; 98: 472–83.
  49. Vorp D.A., Lee P.C., Wang D.H.J., Makaroun M.S., Nemoto E.M., Ogawa S. et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 2001; 34 (2): 291–9. DOI: 10.1067/mva.2001.114813
  50. Cappeller W.A., Engelmann H., Blechschmidt S., Wild M., Lauterjung L. Possible objectification of a critical maximum diameter for elective surgery in abdominal aortic aneurysms based on one- and three-dimensional ratios. J. Cardiovasc. Surg. 1997; 38: 623–8.
  51. Wilson K.A., Lee A.J., Lee A.J., Hoskins P.R., Fowkes F.G.R., Ruckley C.V., Bradbury A.W. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 2003; 37: 112–7. DOI: 10.1067/mva.2003.40
  52. Ouriel K., Green R.M., Donayre C., Shortell C.K., Elliott J., Deweese J.A. An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture. J. Vasc. Sur. 1992; 15: 12–20. DOI: 10.1016/0741-5214(92)70008-9
  53. Vilalta G., Nieto F., Vaquero C., Vilalta J.A., Perez M.A. Patient-specific clinical assessment of abdominal aortic aneurysm rupture risk based on its geometric parameters. Accepted for oral presentation at 8th International Conference on Biomedical Engineering, to be held in Innsbruck–Austria, February 16–18, 2011. DOI: 10.2316/p.2011.723-051
  54. Canchi T., Kumar S.D., Ng E.Y.K., Narayanan S. A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms. BioMed. Res. Intern. 2015; 2015, Article ID 861627. DOI: 10.1155/2015/861627
  55. Podyma M., Zbicinski J., Walecki M., Nowicki M.L., Andziak P., Makowski P., Stefanczyk L. Numerical analysis of blood flow in human abdominal aorta. WIT Transact. Engin. Sci. 2006; 52: 603–11. DOI: 10.2495/afm06059

About Authors

  • Teona R. Tibua, Postgraduate; orcid.org/0000-0002-9552-4856
  • Valeriy S. Arakelyan, Dr. Med. Sc., Professor, Head of Arterial Pathology Surgery Department; orcid.org/0000-0002-0284-6793
  • Aleksandr Yu. Gorodkov, Dr. Biol. Sc., Head of Laboratory of Modeling and Study of the Pathology of Heart and Vessels with Operation Block and Vivarium; orcid.org/0000-0001-5597-4820

 If you found mistakes, select text and press Alt+A