Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Application of high performance liquid chromatography and mass spectrometry for the quantitative determination of local anesthetics in blood plasma

Authors: Chichanovskaya L.V., Popov N.S., Federyakin D.V., Belevskiy Е.V., Mayorov М.О., Zatsepin А.G.

Company:
Tver State Medical University, Tver, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2022-19-2-177-185

UDC: 615.382:543]:616-072

Link: Clinical Physiology of Blood Circulaiton. 2022; 2 (19): 177-185

Quote as: Chichanovskaya L.V., Popov N.S., Federyakin D.V., Belevskiy Е.V., Mayorov М.О., Zatsepin А.G. Application of high performance liquid chromatography and mass spectrometry for the quantitative determination of local anesthetics in blood plasma. Clinical Physiology of Circulation. 2022; 19 (2): 177–85 (in Russ.). DOI: 10.24022/1814-6910-2022-19-2-177-185

Received / Accepted:  04.02.2022 / 10.03.2022

Full text:
Subscribe 🔒

Abstract

Objective: development and validation of a method for the quantitative determination of local anesthetics in blood plasma using high performance liquid chromatography and mass spectrometry.

Material and methods. The objects of the study were lidocaine, bupivacaine and ropivacaine. Mepivacaine was used as an internal standard. The quantitative determination of drugs in blood plasma was carried out using an Agilent Technologies 1260 Infinity II high performance liquid chromatograph and an AB Sciex 3200 QTrap MD mass spectrometer. A Phenomenex Synergi 4 μm Fusion-RP 50 ×2 mm chromatographic column was used. A mixture of deionized water and acetonitrile with the addition of 0.1% formic acid was used as the mobile phase. The choice of the sample preparation method was based on the obtained data on the degree of extraction of analytes and the matrix effect. At the development stage, protein precipitation methods with acetonitrile and methanol were compared, as well as liquid extraction.

Results. Local anesthetics were detected by the corresponding MRM transitions: bupivacaine – m/z 289.1→140.2, ropivacaine – m/z 275.1→126.2, lidocaine – m/z 235.1→86.2, mepivacaine (internal standard) – m/z 247.1→98.1. The following chromatographic parameters were used: mobile phase – 70% aqueous solution of acetonitrile with the addition of 0.1% formic acid, flow rate – 300 μl/min, chromatographic column temperature – 40 °C, sample injection volume – 10 μl, total analysis time – 5 minutes. The retention times of bupivacaine, ropivacaine and lidocaine averaged 1.1 minutes. Extraction of local anesthetics from blood plasma was carried out with hexane. The analytical range of the developed method was from 1 to 1000 ng/ml for bupivacaine, ropivacaine and lidocaine. The developed technique is characterized by speed of execution, selectivity, reproducibility, and accuracy.

Conclusion. The developed method for the quantitative determination of bupivacaine, ropivacaine, and lidocaine in blood plasma fully complies with the requirements of domestic and foreign regulatory documents and can be used to conduct therapeutic drug monitoring of local anesthetics and establish individual pharmacokinetic characteristics of drugs.

References

  1. Печерский В.Г., Музыка Л.В. Сравнение эффективности применения бупивакаина и левобупивакаина для спинальной анестезии при операциях на нижних конечностях. Новости хирургии. 2020; 28 (4): 412–7. DOI: 10.18484/2305-0047.2020.4.412
  2. Yanagidate F., Strichartz G.R. Local anesthetics. Handb. Exp. Pharmacol. 2007; 177: 95–127. DOI: 10.1007/978-3-540-33823-9_4
  3. Eng H.C., Ghosh S.M., Chin K.J. Practical use of local anesthetics in regional anesthesia. Curr. Opin. Anaesthesiol. 2014; 27 (4): 382–7. DOI: 10.1097/ACO.0000000000000091
  4. Golembiewski J. Local anesthetics. J. Perianesth. Nurs. 2013; 28 (6): 409–12. DOI: 10.1016/j.jopan.2013.09.001
  5. Лахин Р.Е., Гемуа И.А., Аверьянов Д.А. Двойное слепое рандомизированное исследование миотоксичности лидокаина, бупивакаина, левобупивакаина и ропивакаина у крыс. Регионарная анестезия и лечение острой боли. 2020; 14 (2): 93–108. DOI: 10.17816/1993-6508-2020-14-2-93-108
  6. Waldinger R., Weinberg G., Gitman M. Local anesthetic toxicity in the geriatric population. Drugs Aging. 2020; 37 (1): 1–9. DOI: 10.1007/s40266-019-00718-0
  7. Wadlund D.L. Local anesthetic systemic toxicity. AORN J. 2017; 106 (5): 367–77. DOI: 10.1016/j.aorn.2017.08.015
  8. Fuzier R., Lapeyre-Mestre M. Safety of amide local anesthetics: new trends. Expert Opin. Drug. Saf. 2010; 9 (5): 759–69. DOI: 10.1517/14740331003789373
  9. Becker D.E., Reed K.L. Essentials of local anesthetic pharmacology. Anesth. Prog. 2006; 53 (3): 98–109. DOI: 10.2344/0003-3006(2006)53[98:EOLAP]2.0.CO;2
  10. Mazoit J.-X. Local anesthetics and their adjuncts. Paediatr. Anaesth. 2012; 22 (1): 31–8. DOI: 10.1111/j.1460-9592.2011.03692.x
  11. Guiochon G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr A. 2007; 1168 (1–2): 101–68; discussion 100. DOI: 10.1016/j.chroma.2007.05.090
  12. Rathnasekara R., Khadka S., Jonnada M., El Rassi Z. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and highperformance liquid chromatography. Electrophoresis. 2017; 38 (1): 60–79. DOI: 10.1002/elps.201600356
  13. Grouls R.J., Ackerman E.W., Korsten H.H., Hellebrekers L.J., Breimer D.D. Partition coefficients (n-octanol/water) of N-butyl-p-aminobenzoate and other local anesthetics measured by reversed-phase high-performance liquid chromatography. J. Chromatogr. B. Biomed. Sci. Appl. 1997; 694 (2): 421–5. DOI: 10.1016/s0378-4347(97)00207-7
  14. Pérez-Baeza M., Escuder-Gilabert L., Martín-Biosca Y., Sagrado S., Medina-Hernández M.J. Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies. J. Chromatogr. A. 2020; 1625: 461334. DOI: 10.1016/j.chroma.2020.461334
  15. Ferré F., Krin A., Sanchez M., Ancelin D., Cavaignac E., Charre A. et al. Perineural dexamethasone attenuates liposomal bupivacaine-induced delayed neural inflammation in mice in vivo. Br. J. Anaesth. 2020; 125 (2): 175–83. DOI: 10.1016/j.bja.2020.04.091
  16. Lamy E., Fall F., Boigne L., Gromov K., Fabresse N., Grassin-Delyle S. Validation according to European and American regulatory agencies guidelines of an LCMS/MS method for the quantification of free and total ropivacaine in human plasma. Clin. Chem. Lab. Med. 2020; 58 (5): 701–8. DOI: 10.1515/cclm-2018-1298
  17. Qin W.-W., Jiao Z., Zhong M.-K., Shi X.-J., Zhang J., Li Z.-D., Cui X.-Y. Simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine in human plasma by high-performance liquid chromatography. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2010; 878 (15–16): 1185–9. DOI: 10.1016/j.jchromb.2010.03.003
  18. Gaudreault F., Drolet P., Varin F. High-performance liquid chromatography using UV detection for the simultaneous quantification of ropivacaine and bupivacaine in human plasma. Ther. Drug. Monit. 2009; 31 (6): 753–7. DOI: 10.1097/FTD.0b013e3181bc8014
  19. Blum F. High performance liquid chromatography. Br. J. Hosp. Med. (Lond). 2014; 75 (2): 18–21. DOI: 10.12968/hmed.2014.75.Sup2.C18
  20. Nesterenko E.P., Nesterenko P.N., Connolly D., He X., Floris P., Duffy E., Paull B. Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst. 2013; 138 (15): 4229–54. DOI: 10.1039/c3an00508a 21. Malherbe C.J., de Beer D., Joubert E. Development of on-line high performance liquid chromatography (HPLC)-biochemical detection methods as tools in the identification of bioactives. Int. J. Mol. Sci. 2012; 13 (3): 3101–33. DOI: 10.3390/ijms13033101
  21. Миронов А.Н., Меркулов В.А., Бунятян Н.Д., Бондарев В.П., Борисевич И.В., Журавлева М.В. и др. Руководство по проведению доклинических исследований лекарственных средств. Часть вторая. М.: Гриф и К; 2013. Mironov A.N., Merkulov V.A., Bunyatyan N.D., Bondarev V.P., Borisevich I.V., Zhuravleva M.V. et al. Guidelines for preclinical studies of drugs. Part 2nd. Moscow; 2013 (in Russ.).
  22. European Medicines Agency. Guideline on validation of bioanalytical methods. EMEA/CHMP/EWP/192217/2009 (2009). www.ema.europa.eu
****
  1. Pecherskiy V.G., Muzyka L.V. Comparison of the efficacy of bupivacaine and levobupivacaine for spinal anesthesia in operations on the lower extremities. News of Surgery. 2020; 28 (4): 412–7 (in Russ.). DOI: 10.18484/2305-0047.2020.4.412
  2. Yanagidate F., Strichartz G.R. Local anesthetics. Handb. Exp. Pharmacol. 2007; 177: 95–127. DOI: 10.1007/978-3-540-33823-9_4
  3. Eng H.C., Ghosh S.M., Chin K.J. Practical use of local anesthetics in regional anesthesia. Curr. Opin. Anaesthesiol. 2014; 27 (4): 382–7. DOI: 10.1097/ACO.0000000000000091
  4. Golembiewski J. Local anesthetics. J. Perianesth. Nurs. 2013; 28 (6): 409–12. DOI: 10.1016/j.jopan.2013.09.001
  5. Lakhin R.E., Gemua I.A., Averyanov D.A. Doubleblind, randomized myotoxicity study of lidocaine, bupivacaine, levobupivacaine, and ropivacaine in rats. Regional Anesthesia and Treatment of Acute Pain. 2020; 14 (2): 93–108 (in Russ.). DOI: 10.17816/1993-6508- 2020-14-2-93-108
  6. Waldinger R., Weinberg G., Gitman M. Local anesthetic toxicity in the geriatric population. Drugs Aging. 2020; 37 (1): 1–9. DOI: 10.1007/s40266-019-00718-0
  7. Wadlund D.L. Local anesthetic systemic toxicity. AORN J. 2017; 106 (5): 367–77. DOI: 10.1016/j.aorn.2017.08.015
  8. Fuzier R., Lapeyre-Mestre M. Safety of amide local anesthetics: new trends. Expert Opin. Drug. Saf. 2010; 9 (5): 759–69. DOI: 10.1517/14740331003789373
  9. Becker D.E., Reed K.L. Essentials of local anesthetic pharmacology. Anesth. Prog. 2006; 53 (3): 98–109. DOI: 10.2344/0003-3006(2006)53[98:EOLAP]2.0.CO;2
  10. Mazoit J.-X. Local anesthetics and their adjuncts. Paediatr. Anaesth. 2012; 22 (1): 31–8. DOI: 10.1111/j.1460-9592.2011.03692.x
  11. Guiochon G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr A. 2007; 1168 (1–2): 101–68; discussion 100. DOI: 10.1016/j.chroma.2007.05.090
  12. Rathnasekara R., Khadka S., Jonnada M., El Rassi Z. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and highperformance liquid chromatography. Electrophoresis. 2017; 38 (1): 60–79. DOI: 10.1002/elps.201600356
  13. Grouls R.J., Ackerman E.W., Korsten H.H., Hellebrekers L.J., Breimer D.D. Partition coefficients (n-octanol/water) of N-butyl-p-aminobenzoate and other local anesthetics measured by reversed-phase high-performance liquid chromatography. J. Chromatogr. B. Biomed. Sci. Appl. 1997; 694 (2): 421–5. DOI: 10.1016/s0378-4347(97)00207-7
  14. Pérez-Baeza M., Escuder-Gilabert L., Martín-Biosca Y., Sagrado S., Medina-Hernández M.J. Reversed phase liquid chromatography for the enantioseparation of local anaesthetics in polysaccharide-based stationary phases. Application to biodegradability studies. J. Chromatogr. A. 2020; 1625: 461334. DOI: 10.1016/j.chroma.2020.461334
  15. Ferré F., Krin A., Sanchez M., Ancelin D., Cavaignac E., Charre A. et al. Perineural dexamethasone attenuates liposomal bupivacaine-induced delayed neural inflammation in mice in vivo. Br. J. Anaesth. 2020; 125 (2): 175–83. DOI: 10.1016/j.bja.2020.04.091
  16. Lamy E., Fall F., Boigne L., Gromov K., Fabresse N., Grassin-Delyle S. Validation according to European and American regulatory agencies guidelines of an LCMS/MS method for the quantification of free and total ropivacaine in human plasma. Clin. Chem. Lab. Med. 2020; 58 (5): 701–8. DOI: 10.1515/cclm-2018-1298
  17. Qin W.-W., Jiao Z., Zhong M.-K., Shi X.-J., Zhang J., Li Z.-D., Cui X.-Y. Simultaneous determination of procaine, lidocaine, ropivacaine, tetracaine and bupivacaine in human plasma by high-performance liquid chromatography. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2010; 878 (15–16): 1185–9. DOI: 10.1016/j.jchromb.2010.03.003
  18. Gaudreault F., Drolet P., Varin F. High-performance liquid chromatography using UV detection for the simultaneous quantification of ropivacaine and bupivacaine in human plasma. Ther. Drug. Monit. 2009; 31 (6): 753–7. DOI: 10.1097/FTD.0b013e3181bc8014
  19. Blum F. High performance liquid chromatography. Br. J. Hosp. Med. (Lond). 2014; 75 (2): 18–21. DOI: 10.12968/hmed.2014.75.Sup2.C18
  20. Nesterenko E.P., Nesterenko P.N., Connolly D., He X., Floris P., Duffy E., Paull B. Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst. 2013; 138 (15): 4229–54. DOI: 10.1039/c3an00508a 21. Malherbe C.J., de Beer D., Joubert E. Development of on-line high performance liquid chromatography (HPLC)-biochemical detection methods as tools in the identification of bioactives. Int. J. Mol. Sci. 2012; 13 (3): 3101–33. DOI: 10.3390/ijms13033101
  21. Mironov A.N., Merkulov V.A., Bunyatyan N.D., Bondarev V.P., Borisevich I.V., Zhuravleva M.V. et al. Guidelines for preclinical studies of drugs. Part 2nd. Moscow; 2013 (in Russ.).
  22. European Medicines Agency. Guideline on validation of bioanalytical methods. EMEA/CHMP/EWP/192217/2009 (2009). www.ema.europa.eu

About Authors

  • Lesya V. Chichanovskaya, Dr. Med. Sci., Professor, Chief of Chair of Neurology, Rehabilitation and Neurosurgery; ORCID
  • Nikita S. Popov, Cand. Pharm. Sci., Head of Research Laboratory; ORCID
  • Denis V. Federyakin, Dr. Med. Sci., Chief of Chair of Surgery and Anesthesiology-Intensive Care; ORCID
  • Еvgeniy V. Belevskiy, Cand. Med. Sci., Assistant Professor of Chair of Surgery and Anesthesiology-Intensive Care, Head of Department of Anesthesiology-Intensive Care;
  • Мaksim О. Mayorov, Postgraduate, Anesthesiologist-Intensivist;
  • Аleksandr G. Zatsepin, Postgraduate

 If you found mistakes, select text and press Alt+A