Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The approaches to nanomaterial biomedical safety evaluation

Authors: Sidorenko E.S., Fadeev A.A., Agafonov A.V.

Company:
A.N. Bakoulev Scientific Center for Cardiovascular Surgery of Russian Academy of Medical Sciences, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

Link: Clinical Physiology of Blood Circulaiton. 2014; (): -

Quote as: Sidorenko E.S., Fadeev A.A., Agafonov A.V. The approaches to nanomaterial biomedical safety evaluation. Klinicheskaya Fiziologiya Krovoobrashcheniya. 2014; 2: 5–13.

Full text:  

Abstract

The article provides a general view for safety evaluation of nanomaterials, which are beginning to be used as substrates of medicines for oral use, dermal exposure, inhalations, injections, and as the component of the materials for implantable medical devices.
The atoms or molecules on the surface of the nanomaterial may be chemically and biologically reactive, potentially con- tributing to the development of adverse effects when using in humans. Researchers manifest some concern over nanopar- ticles possible adverse effects. As new materials obtained on the basis of nanotechnologies, it is necessary to develop a system of methods by means of those one could assess the potential biological compatibility of new material, its toxicity, impact levels, and to get information that could be used for biomedical safety assessment of nanomaterials in long terms of its use as well.
The traditional approaches, standards and study protocols for biomedical assessment of chemical substances, including ultra fine particles, could be quite applicable for the determination of significant characteristics of nanomaterials. However, in the very near future the evaluation of nonmaterial will require an interdisciplinary approach for physicians, biologists, tox- icologists and specialists in materials science, chemistry, physics, biotechnology etc.

References

1. Roco M.C., Williams R.S., Alivisatos P. (eds). Nanotechno- logy research directions. Dordrecht: Kluwer Academic Publishers; 2000; 8.
2. Nel A., Xia Т., Madler L., Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311: 622–7.
3. Roco M.C. Nanotechnology: convergence with modern biolo- gy and medicine. Curr. Opin. Biotechnol. 2003; 14: 337–46.
4. Ishijima A., Yanagida T. Single molecule nanobioscience. Trends Biochem. Sci. 2001; 26: 438–44.
5. OberdÖrster G., OberdÖrster E., OberdÖrster J. Nanotoxi- cology: An emerging discipline evolving from studies of ultra- fine particles. Environmental Health Perspective. 2005; 113: 823–39.
6. Warheit D.B., Laurence B.R., Reed K.L., Roach D.N., Reynolds G.A., Webb T.R. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicolo- gical Sciences. 2004; 77 (1): 117–25.
7. Warheit D.B., Hoke R.A., Finlay C., Donner E.M., Reed K.L., Sayes C.M. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticles risk management. Toxicology Letters. 2007; 171 (3): 99–110.
8. Lam C.-W., James J.T., McCluskey R., Hunter R.L. Pulmo- nary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences. 2004; 77 (1): 126–34.
9. Shvedova A.A., Kisin E.R., Murray A.R., Johnson V.J., Gorelik O., Arepalli S. et al. Inhalation vs. aspiration of single- walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell. Molecular Physiol. 2008; 295 (4): L552–65.
10. Shvedova A.A., Kisin E.R., Porter D., Schulte P., Kagan V.E., Fadeel B. et al. Mechanisms of pulmonary toxicity and med- ical applications of carbon nanotubes: Two faces of Janus? Pharmacol. Therapeutics. 2009; 121 (2): 192–204.
11. Monteiro-Riviere N.A., Nemanich R.J., Inman A.O., Wang Y.Y., Riviere J.E. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicology Letters. 2005; 155 (3): 377–84.
12. Sayes C.M., Fortner J.D., Guo W., Lyon D., Boyd A.M., Ausman K.D. et al. The differential cytotoxicity of water solu- ble fullerenes. Nano Letters. 2004; 4 (10): 1881–7.
13. Sayes С.М., Reed K.L., Warheit D.B. Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences. 2007; 97 (1): 163–80.
14. Baker G.L., Gupta A., Clark M.L., Valenzuela B.R., Staska L.M., Harbo S.J. et al. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicological Sciences. 2008; 101 (1): 122–31.
15. Ji J.H., Jung J.H., Kim S.S., Yoon J.U., Park J.D., Choi B.S. et al. Twenty-eight-day inhalation toxicity study of silver nano- particles in Sprague-Dawley rats. Inhalation Toxicology. 2007; 19 (10): 857–71.
16. Helland A., Wick P., Koehler A., Schmid K., Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental Health Perspectives. 2007; 115 (8): 1125–31.
17. Park В., Donaldson K., Duffin R., Tran L., Kelly F., Mud- way I. et al. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive – a case study. Inhalation Toxicology. 2008; 20 (6): 547–66.
18. Poland С.A., Duffin R., Kinloch I., Maynard A., Walla- ce W.A., Seaton A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogeni- city in a pilot study. Nature Nanotechnology. 2008; 3 (7): 423–8.
19. Nygaard U.C., Hansen J.S., Samuelsen M., Alberg T., Marioara C.D., Lo/vik M. Single-walled and multi-walled car- bon nanotubes promote allergic immune responses in mice. Toxicological Sciences. 2009; 109 (1): 113–23.
20. Stern S.T., McNeil S.E. Nanotechnology safety concerns revisited. Toxicological Sciences. 2008; 101 (1): 4–21.
21. Williams D. Carbon nanotubes in medical technology. Medical Device Technology. 2007; 8 (2): 8–10.
22. Christenson E.M., Anseth K.S., van den Beucken J.J., Chan C.K., Ercan B., Jansen J.A. et al. Nanobiomaterial applications in orthopedics. J. Orthopedic Research. 2007; 25 (1): 11–22.
23. Yang X. Nano- and micro particle based imaging of cardiovas- cular interventions: overview. Radiology. 2007; 243 (2): 340–7.
24. Bai S., Thomas C., Rawat A., Ahsan F. Recent progress in dendrite-based nanocarriers. Critical Reviews in Therapeutic
Drug Carrier Systems. 2006; 23 (6): 437–95.
25. Lockman P.R., Koziara J.M., Mumper R.J., Allen D.D.
Nanoparticle surface charges alter blood-brain barrier integri-
ty and permeability. J. Drug Targeting. 2004; 12: 635–41.
26. Wang J., Chen C., Liu Y., Jiao F., Li W., Lao F. et al. Potential neurological lesion after nasal instillation of ТiO2 nanoparti- cles in the anatine and retile crystal phases. Toxicology Letters.
2008; 183 (1–3): 72–80.
27. Wang J., Liu Y., Jiao E., Lao F., Li W., Gu Y. et al. Time-
dependent translocation and potential impairment on central nervous system by intranasal instilled TiO2 nanoparticles. Toxicology Letters. 2008; 254 (1–2): 82–90.
28. Brook R.D. Cardiovascular effects of air pollution. Clinical Science. 2008; 115 (6): 175–87.
29. Sint Т., Donohue J.E., Ghio A.J. Ambient air pollution parti- cles and the acute exacerbation of chronic obstructive pul- monary disease. Inhaled Toxicology. 2008; 20 (1): 25–9.
30. Borm P., Robbins D., Haubold S., Kuhlbusch T., Fissan H., Donaldson K. et al. The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fiber Toxicology. 2006; 3: 1–35.
31. Warheit D.B., Webb T.R., Reed K.L., Frerichs S., Sayes C.M. Pulmonary toxicity study in rats with three forms of ultrafine- TiO2 particles: differential responses related to surface proper- ties. Toxicology. 2007; 230 (1): 90–104.
32. Teeguarden J.G., Hinderliter P.M., Orr G., Thrall B.D., Pounds J.G. Particokinetics in vitro: Dosimetry Considera- tions for in vitro Nanoparticle Toxicity Assessments. Toxico- logical Sciences. 2007; 95 (2): 300–12.
33. Powers K.W., Palazuelos M., Moudgil B.M., Roberts S.M. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology. 2007; 1 (1): 42–51.
34. Powers K.W., Brown S.C., Krishna V.B., Wasdo S.C., Moud- gil B.M., Roberts S.M. Research strategies for safety evalua- tion of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences. 2006; 90: 296–303.
35. Purchase I.F.H. Risk assessment. Principles and conse- quences. Pure and Applied Chemistry. 2000; 72 (6): 1051–6.
36. Braydich-Stolle L., Hussain S., Schlager J.J., Hofmann M.C. In vitro cytotoxicity of nanoparticles in mammalian germ line stem cells. Toxicological Sciences. 2005; 88: 412–9.
37. Hussain S.M., Hess K.L., Gearhart J.M., Geiss K.T., Schla- ger J.J. In vitro toxicity of nanoparticles in BRL ЗА rat liver cells. Toxicology in Vitro. 2005; 19: 975–83.
38. Бокерия Л.А., Агафонов А.В., Волков Р.Л., Кузнецов В.О., Кукин В.Н., Боргардт Н.И., Фадеев А.А. Исследования микроструктуры контактирующих с кровью поверхнос- тей имплантируемых изделий из пироуглеродных мате- риалов. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2013; 14 (2): 26–35.
39. Dobrova N.B., Sidorenko E.S., Kevorkova R.A. The quantita- tive characteristics of thromboresistance of two types of Tita- nium showing promise for cardiovascular surgery. Proceedings of 3rd World Congress of Biomechanics. 1998, August 2–8; Sapporo; Japan; 1998.
40. Сидоренко Е.С., Чижов А.Я. (ред.) Эндоэкологические реакции адаптации при имплантации гемо- и биосовмес- тимых материалов. М.: РУДН; 2006.

 If you found mistakes, select text and press Alt+A