Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Influence of hypercapnia on system and cerebral hemodynamics in healthy patients

Authors: Shumilina M.V., Strelkova T.V.

Company:
A.N. Bakoulev Scientific Center for Cardiovascular Surgery, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

Link: Clinical Physiology of Blood Circulaiton. 2014; (): -

Quote as: Shumilina M.V., Strelkova T.V. Influence of hyper- capnia on system and cerebral hemodynamics in healthy patients. Klinicheskaya Fiziologiya Krovoobrashcheniya. 2014; 4: 33-39.

Full text:  

Abstract

Objective – to examine the influence of hypercapnia on system and cerebral hemodynamics in healthy patients.
Material and methods. Structure of the study included 30 healthy volunteers. Complex ultrasound research of brachio- cephalic vessels was made all patients. Device “Carbonic” provided the level of 6% CO2 in the alveolar air. Transcranial Doppler was used to assess the blood flow velocity in the MCA in rest and at the peak of hypercapnia. Arterial and venous blood pressure (ABP, VBP), heart rate (HR) were assessed noninvasively in rest and at peak of hypercapnia. Reactivity coefficient ABP, VBP, HR per 1 mm Hg increase in CO2, reactivity index for peak systolic, averaged on time and end-dias- tolic blood flow velocity (BFV) per 1 mm Hg increase in CO2, vasodilation reserve index per 1% increase in CO2 for pul- satility, systolic-diastolic indexes and index resistance were calculated by the corresponding formulas.
Results. Reactivity coefficient ABP was from -0,32 to 0,61, HR – from -0,60 to 1,40, BBP – from -0,65 to 0,32 per 1 mm Hg increase in CO2. Changes in ABP, HR, VBP during CO2 reactivity testing are statistic non-significantly (p > 0,05). Reactivity index for peak systolic, time averaged mean velocity and end-diastolic BFV in healthy patients was ≥1,4, ≥1,6 and ≥2,1 per 1 mm Hg respectively. Vasodilation reserve index for resistance index, systolic-diastolic index and pulsatility index on 1% increase in CO2 was ≤ -2,4, ≤ -3,2, ≤ -5,3 respectively. Changes in systolic, time averaged mean and diastolic BFV and peripheral resistance indexes in healthy patients during CO2 reactivity testing increased statistically significant (p < 0,01).
Conclusion. Negative subjective feelings and significant changes of objective indicators of system haemodynamics (AD, VD, HR) at healthy patients in during CO2 reactivity testing don't occur. Increase end-diastolic velocity is the most sensitive because of not less than 1.5 times more growth peak systolic velocity and, therefore, diagnostically more valuable when determining the true CVR. The most significant changes affected pulsatility (index Gosling), systolic-diastolic indexes, less pronounced – the index of the circulatory resistance (index of Pourcelot).

References

1. Kleiser B., Widder B. Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke. 1992; 23: 171–4.
2. Markus H., Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001; 124: 457–67.
3. Gupta А., Chazen J.L., Hartman M., Delgado D., Anumu- la N., Shao H. et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion. A systematic review and meta-analysis. Stroke. 2012; 43: 2884–91.
4. Portegies M.L.P., de Bruijn R.F.A.G., Hofman A., Koud- staal P.J., Ikram M.A. Cerebral vasomotor reactivity and risk of mortality: The Rotterdam study. Stroke. 2014; 45: 42–7.
5. Гераскина Л.А. Хронические цереброваскулярные забо- левания при артериальной гипертонии: кровоснабжение мозга, центральная гемодинамика и функиональный сосудистый резерв: Автореф. дис. ... д-ра мед. наук. М.; 2008.
6. Gooskens I., Schmidt E.A., Czosnyka M., Piechnik St.K., Smielewski P., Kirkpatrick P.J. et al. Pressure-autoregulation, CO2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal. ActaNeurochir. 2003; 145: 527–32.
7. Куликов В.П. Ультразвуковая диагностика сосудистых заболеваний: Руководство для врачей. 2-е изд. М.: Стром; 2011.
8. Шумилина М.В. Комплексная ультразвуковая диагнос- тика патологии периферических сосудов: Учебно-мето- дическое руководство. Изд. 2-е, доп. М.: НЦССХ им. А.Н. Бакулева РАМН; 2012.
9. Huber P., Handa J. Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Angiographic determination in man. Invest Radiol. 1967; 2: 17–32.
10. Visser G.H., van der Grond J., van Huffelen A.C., Wiene- ke G.H., Eikelboom B.C. Decreased transcranial Doppler carbon dioxide reactivity is associated with disordered cerebral metabolism in patients with internal carotid artery stenosis. J. Vasc. Surg. 1999; 30: 252–60.
11. Куликов В.П. Артериовенозная церебральная реактив- ность на гиперкапнию в диагностике нарушений мозго- вого кровотока. Клин. физиол. кровообр. 2009; 4: 5–15.
12. Paulson O.B., Strandgaard S., Edvinsson L. Cerebral autoreg- ulation. Cerebrovasc. Brain. Metab. Rev. 1990; 2: 161–92.
13. Harper A.M., Jennet S. Cerebral blood flow and metabolism.
Physiol. Soc. Study Guides. 1990; 5: 1–26.
14. Dumville J., Panerai R.B., Lennard N.S., Naylor A.R.,
Evans D.H. Can cerebrovascular reactivity be assessed without measuring blood pressure in patients with carotid artery dis- ease? Stroke. 1998; 29: 968–74.
15. Smielewski P., Czosnyka M., Pickard J.D., Kirkpatrick P. Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery dis- ease. Stroke. 1997; 28: 331–8.
16. Hetzel A., Braune S., Guschlbauer B., Dohms K. CO2 reacti- vity testing without blood pressure monitoring? Stroke. 1999; 30: 398–401.
17. Гайдар Б.В., Свистов Д.В., Храпов К.Н. Полуколичест- венная оценка ауторегуляции кровоснабжения головного мозга в норме. Неврол. и психиатрия. 2000; 6: 38–40.
18. Засорин С.В., Куликов В.П. Зависимость гемодинамиче- ских проявлений каротидных стенозов от системного ар- териального давления. Ультразв. и функц. диагн. 2006; 4: 76–80.
19. Harper A.M., Glass H.I. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressure. J. Neurol. Neurosurg. Psychiatry. 1965; 28: 449–52.
20. Burki N.K., Albert R.K. Noninvasive monitoring of arterial blood gases. Chest. 1983; 83: 666–70.
21. Tominaga S., Strandgaard S., Uemura K., Ito K., Kutsuzawa T., Lasses N.A. еt al. Cerebrovascular CO2 reactivity in normotensive and hypertensive man. Stroke. 1976; 7: 507–10.
22. Markwalder T.M., Grolimund P., Seiler R.W., Roth F., Aaslid R. Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure: a transcranial ultrasound Doppler study. J. Cerebr. Blood Flow Metab. 1984; 4: 368–72.
23. Ogawa S., Handa N., Matsumoto M., Etani H., Yoneda S., Kimura K. et al. Carbon dioxide reactivity of the blood flow in human basilar artery estimated by the transcranial Doppler method in normal men: a comparison with that of the middle cerebral artery. Ultrasound Med. Biol. 1988; 14: 479–83.

 If you found mistakes, select text and press Alt+A