Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Влияние генетически обусловленной гипергомоцистеинемии на результаты реваскуляризации миокарда и прогноз

Авторы: Бузиашвили Ю.И., Кокшенева И.В., Турахонов Т.К., Бузиашвили В.Ю.

Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2024-21-1-5-17

УДК: 616.132.2-089

Библиографическая ссылка: Клиническая физиология кровообращения. 2024; 21 (1): 5-17

Цитировать как: Бузиашвили Ю.И., Кокшенева И.В., Турахонов Т.К., Бузиашвили В.Ю. . Влияние генетически обусловленной гипергомоцистеинемии на результаты реваскуляризации миокарда и прогноз. Клиническая физиология кровообращения. 2024; 21 (1): 5-17. DOI: 10.24022/1814-6910-2024-21-1-5-17

Ключевые слова: гомоцистеин, гипергомоцистеинемия, полиморфизм С677T, ген MTHFR, чрескожное коронарное вмешательство, рестеноз стента, прогрессирование атеросклероза, результаты реваскуляризации миокарда

Поступила / Принята к печати:  08.02.2024 / 01.03.2024

Скачать (Download)


Аннотация

Гипергомоцистеинемия – установленный значимый фактор риска атеросклеротического поражения сосудов и неблагоприятных сердечно-сосудистых исходов. Повышение уровня гомоцистеина в плазме обычно связано с генетическими дефектами ферментов, участвующих в метаболизме гомоцистеина.

В обзоре проанализированы роль гипергомостеинемии в атерогенезе и развитии сердечно-сосудистых осложнений, ее влияние на результаты реваскуляризации миокарда и прогноз, рассматриваются генетические аномалии, приводящие к развитию гипергомоцистеинемии.

Дальнейшие исследования по изучению патогенеза гипергомоцистеинемии при атеросклеротических заболеваниях могут иметь важное значение, а снижение гомоцистеина может стать новой потенциальной «терапевтической мишенью», позволяющей улучшить результаты лечения.

Литература

  1. McCully K.S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969; 56 (1): 111–128.
  2. Султанова О.Э., Чернышева Е.Н., Коханов А.В., Севостьянова И.В. Эволюция тренда исследований гомоцистеина в кардиологической практике. Современные проблемы науки и образования. 2020; 4. DOI: 10.17513/spno.29937
  3. Della Corte V., Todaro F., Cataldi M., Tuttolomondo A. atherosclerosis and its related laboratory biomarkers. Int. J. Mol. Sci. 2023; 24 (21): 15546. DOI: 10.3390/ijms242115546
  4. Valeriani E., Pastori D., Astorri G., Porfidia A., Meni-chelli D., Pignatelli P. Factor V Leiden, prothrombin, MTHFR, and PAI-1 gene polymorphisms in patients with arterial disease: a comprehensive systematic-review and meta-analysis. Thromb. Res. 2023; 230: 74–83. DOI: 10.1016/j.thromres.2023.08.006
  5. Guo J., Gao Y., Ahmed M., Dong P., Gao Y., Gong Z. et al. Serum homocysteine level predictive capability for severity of restenosis post percutaneous coronary intervention. Front. Pharmacol. 2022; 13: 816059. DOI: 10.3389/fphar.2022.816059
  6. McCully K.S. Hyperhomocysteinemia and arteriosclerosis: historical perspectives. Clin. Chem. Lab. Med. 2005; 43 (10): 980–986. DOI: 10.1515/CCLM.2005.172
  7. Froese D.S., Huemer M., Suormala T., Burda P., Coelho D., Guéant J.L. et al. mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum. Mutat. 2016; 37 (5): 427–438. DOI: 10.1002/humu.22970
  8. Mudd S.H., Uhlendorf B.W., Freeman J.M., Finkelstein J.D., Shih V.E. Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity. Biochem. Biophys. Res. Commun. 1972; 46 (2): 905–912. DOI: 10.1016/s0006-291x(72)80227-4
  9. Kang S.S., Wong P.W., Zhou J.M., Sora J., Lessick M., Ruggie N., Grcevich G. Thermolabile methylenetetra-hydrofolate reductase in patients with coronary artery disease. Metabolism. 1988; 37 (7): 611–613. DOI: 10.1016/0026-0495(88)90076-5
  10. Shiran A., Remer E., Asmer I., Karkabi B., Zittan E., Cassel A. et al. Association of Vitamin B12 Deficiency with Homozygosity of the TT MTHFR C677T genotype, hyperhomocysteinemia, and endothelial cell dysfunction. Isr. Med. Assoc. J. 2015; 17 (5): 288–292.
  11. Raghubeer S., Matsha T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients. 2021; 13 (12): 4562. DOI: 10.3390/nu13124562
  12. Tanaka T., Scheet P., Giusti B., Bandinelli S., Piras M.G., Usala G. et al. Genomewide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet. 2009; 84 (4): 477–482. DOI: 10.1016/j.ajhg.2009.02.011
  13. Wilcken B. Medicine. Newborn screening: gaps in the evidence. Science. 2013; 342 (6155): 197–198. DOI: 10.1126/science.1243944
  14. Dedoussis G.V., Panagiotakos D.B., Pitsavos C., Chrysohoou C., Skoumas J., Choumerianou D., Stefanadis C. ATTICA Study Group. An association between the methylenetetrahydrofolate reductase (MTHFR) C677T mutation and inflammation markers related to cardiovascular disease. Int. J. Cardiol. 2005; 100 (3): 409–414. DOI: 10.1016/j.ijcard.2004.08.038
  15. Khalighi K., Cheng G., Mirabbasi S., Khalighi B., Wu Y., Fan W. Opposite impact of Methylene tetra-hydrofolate reductase C677T and Methylene tetrahyd-rofolate reductase A1298C gene polymorphisms on systemic inflammation. J. Clin. Lab. Anal. 2018; 32 (5): e22401. DOI: 10.1002/jcla.22401
  16. Alizadeh S., Djafarian K., Moradi S., Shab-Bidar S. C667T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocardial infarction: a systematic review and meta-analysis. Int. J. Cardiol. 2016; 217: 99–108. DOI: 10.1016/j. ijcard.2016.04.181
  17. Zalavras Ch.G., Giotopoulou S., Dokou E., Mitsis M., Ioannou H.V., Tzolou A. et al. Lack of association between the C677T mutation in the 5,10-methy-lenetetrahydrofolate reductase gene and venous thromboembolism in Northwestern Greece. Int. Angiol. 2002; 21 (3): 268–271.
  18. Casas J.P., Hingorani A.D., Bautista L.E., Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch. Neurol. 2004; 61 (11): 1652–1661. DOI: 10.1001/archneur.61.11.1652
  19. Nygård O., Nordrehaug J.E., Refsum H., Ueland P.M., Farstad M., Vollset S.E. Plasma homocysteine levels and mortality in patients with coronary artery disease. N. Engl. J. Med. 1997; 24; 337 (4): 230–236. DOI: 10.1056/NEJM199707243370403
  20. Stubbs P.J., Al-Obaidi M.K., Conroy R.M., Collinson P.O., Graham I.M., Noble I.M. Effect of plasma homocysteine concentration on early and late events in patients with acute coronary syndromes. Circulation. 2000; 102 (6): 605–610. DOI: 10.1161/01.cir.102.6.605
  21. Медведев Д.В., Звягина В.И. Молекулярные механизмы токсического действия гомоцистеина. Кардиологический вестник. 2017; 12(1): 52–57.
  22. Bouzidi N., Hassine M., Fodha H., Ben Messaoud M., Maatouk F., Gamra H., Ferchichi S. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci. Rep. 2020; 10 (1): 10064. DOI: 10.1038/s41598-020-66937-3
  23. Akyürek Ö., Akbal E., Güneş F. Increase in the risk of ST elevation myocardial infarction is associated with homocysteine level. Arch. Med. Res. 2014; 45 (6): 501–506. DOI: 10.1016/j.arcmed.2014.08.003
  24. Chen C.J., Yang T.C., Chang C., Lu S.C., Chang P.Y. Homocysteine is a bystander for ST-segment elevation myocardial infarction: a case- control study. B.M.C. Cardiovasc. Disord. 2018; 18 (1): 33. DOI: 10.1186/s12872-018-0774-8
  25. Lakkakula B.V.K.S. Association between MTHFR 677C>T polymorphism and vascular complications in sickle cell disease: a meta-analysis. Transfus. Clin. Biol. 2019; 26 (4): 284–288. DOI: 10.1016/j.tracli.2019.01.003
  26. Luo Z., Lu Z., Muhammad I., Chen Y., Chen Q., Zhang J., Song Y. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids. Health. Dis. 2018; 17 (1): 191. DOI: 10.1186/s12944- 018-0837-y
  27. Morita H., Taguchi J., Kurihara H., Kitaoka M., Kaneda H., Kurihara Y. et al. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation. 1997; 95 (8): 2032–2036. DOI: 10.1161/01.cir.95.8.2032
  28. Kluijtmans L.A., Whitehead A.S. Methylenetetrahydro-folate reductase genotypes and predisposition to athero-thrombotic disease; evidence that all three MTHFR C677T genotypes confer different levels of risk. Eur. Heart. J. 2001; 22 (4): 294–299. DOI: 10.1053/euhj.2000.2239
  29. Wald D.S., Morris J.K., Wald N.J. Reconciling the evidence on serum homocysteine and ischaemic heart disease: a meta-analysis. PLoS. One. 2011; 6 (2): e16473. DOI: 10.1371/journal.pone.0016473
  30. Raina J.K., Sharma M., Panjaliya R.K., Dogra V., Bakaya A., Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with Coronary Artery Disease (CAD). B.M.C. Cardiovasc. Disord. 2020; 20 (1): 340. DOI: 10.1186/s12872-020-01618-7
  31. Raina J.K., Sharma M., Panjaliya R.K., Bhagat M., Sharma R., Bakaya A., Kumar P. Methylenetetra-hydrofolate reductase C677T and methionine synthase A2756G gene polymorphisms and associated risk of cardiovascular diseases: a study from Jammu region. Indian. Heart. J. 2016; 68 (3): 421–430. DOI: 10.1016/j.ihj.2016.02.009
  32. Abd El-Aziz T.A., Mohamed R.H. Influence of MTHFR C677T gene polymorphism in the development of cardiovascular disease in Egyptian patients with rheuma-toid arthritis. Gene. 2017; 610: 127–132. DOI: 10.1016/j.gene.2017.02.015
  33. Li Y.Y. Methylenetetrahydrofolate reductase C677T gene polymorphism and coronary artery disease in a Chinese Han population: a meta- analysis. Metabolism. 2012; 61 (6): 846–852. DOI: 10.1016/j.metabol.2011.10.013
  34. Mallhi T.H., Shahid M., Rehman K., Khan Y.H., Alana-zi A.S., Alotaibi N.H. et al. Biochemical Association of MTHFR C677T Polymorphism with Myocardial Infarction in the Presence of Diabetes Mellitus as a Risk Factor. Metabolites. 2023; 13 (2): 251. DOI: 10.3390/metabo13020251
  35. Samii A., Aslani S., Imani D., Razi B., Samaneh Tabaee S., Jamialahmadi T., Sahebkar A. MTHFR gene polymorp-hisms and susceptibility to myocardial infarction: evidence from meta-analysis and trial sequential analysis. Int. J. Cardiol. Heart Vasc. 2023; 49: 101293. DOI: 10.1016/j.ijcha.2023.101293
  36. Kang S., Wu Y., Liu L., Zhao X., Zhang D. Association of the A1298C polymorphism in MTHFR gene with ischemic stroke. J. Clin. Neurosci. 2014; 21 (2): 198–202. DOI: 10.1016/j.jocn.2013.04.017
  37. Пизова Н.В., Пизов Н.А. Гипергомоцистеинемия и ишемический инсульт. Медицинский совет. 2017; 10: 12–14. DOI: 10.21518/2079- 701X-2017-10-12-17
  38. Kumar A., Kumar P., Kathuria P., Misra S., Pandit A.K., Chakravarty K., Prasad M. Genetics of ischemic stroke: an Indian scenario. Neurol. India. 2016; 64 (1): 29–37. DOI: 10.4103/0028-3886.173645
  39. Paradkar M.U., Padate B., Shah S.A.V., Vora H., Asha-vaid T.F. association of genetic variants with hyperhomo-cysteinemia in indian patients with thrombosis. Indian. J. Clin. Biochem. 2020; 35 (4): 465–473. DOI: 10.1007/s12291-019-00846-9
  40. Zhao L., Li T., Dang M., Li Y., Fan H., Hao Q. et al. Association of methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C>T) gene polymorphism with ischemic stroke risk in different populations: an updated meta-analysis. Front. Genet. 2023; 13: 1021423. DOI: 10.3389/ fgene.2022.1021423
  41. Schnyder G., Roffi M., Pin R., Flammer Y., Lange H., Eberli F.R. et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N. Engl. J. Med. 2001; 345 (22): 1593–1600. DOI: 10.1056/NEJMoa011364
  42. Wong C.K., Hammett C.J., The R., French J.K., Gao W., Webber B.J. et al. Lack of association between baseline plasma homocysteine concentrations and restenosis rates after a first elective percutaneous coronary intervention without stenting. Heart. 2004; 90 (11): 1299–1302. DOI: 10.1136/hrt.2003.020701
  43. Сваровская А.В., Аржаник М.Б., Огуркoва О.Н., Кужелева Е.А., Баев А.Е., Гарганеева А.А. Прогностическая ценность лабораторных маркеров в развитии кардиальных исходов у пациентов со стабильной ишемической болезнью сердца после плановой эндоваскулярной реваскуляризации. Кардиология. 2021; 61 (9): 33–39. DOI: 10.18087/cardio.2021.9.n1528
  44. Kosokabe T., Okumura K., Sone T., Kondo J., Tsuboi H., Mukawa H. et al. Relation of a common methylen-etetrahydrofolate reductase mutation and plasma homocysteine with intimal hyperplasia after coronary stenting. Circulation. 2001; 103 (16): 2048–2054. DOI: 10.1161/01. cir.103.16.2048
  45. Han T.W., Zhou S.S., Li J.T., Tian F., Mu Y., Jing J. et al. Homocysteine is associated with the progression of non-culprit coronary lesions in elderly acute coronary syndrome patients after percutaneous coronary intervention. J. Geriatr. Cardiol. 2016; 13 (4): 299–305. DOI: 10.11909/j.issn.1671-5411.2016.04.010
  46. Yeh J.K., Chen C.C., Hsieh M.J., Tsai M.L., Yang C.H., Chen D.Y. et al. Impact of homocysteine level on long-term cardiovascular outcomes in patients after coronary artery stenting. J. Atheroscler. Thromb. 2017; 24 (7): 696–705. DOI: 10.5551/jat.36434
  47. Zhang Z., Xiao S., Yang C., Ye R., Hu X., Chen X. Association of elevated plasma homocysteine level with restenosis and clinical outcomes after percutaneous coronary interventions: a systemic review and meta-analysis. Cardiovasc. Drugs. Ther. 2019; 33 (3): 353–361. DOI: 10.1007/s10557-019-06866-0
  48. Денисова А.Г., Татарченко И.П., Позднякова Н.В., Кулюцина Е.Р., Левашова О.А. Гипергомоцистеинемия и дисфункция эндотелия артерий в оценке риска сердечно-сосудистых осложнений у больных сахарным диабетом. Здоровье и образование в XXI веке. 2016; 18 (2): 25–29.
  49. Ma S.C., Hao Y.J., Jiao Y., Wang Y.H., Xu L.B., Mao C.Y. et al. Homocysteine induced oxidative stress through TLR4/NF κB/DNMT1 mediated LOX 1 DNA methylation in endothelial cells. Mol. Med. Rep. 2017; 16 (6): 9181–9188. DOI: 10.3892/mmr.2017.7753
  50. Timizheva K.B., Ahmed A.A.M., Ait Aissa A., Aghajanyan A.V., Tskhovrebova L.V., Azova M.M. Association of the DNA methyltransferase and folate cycle enzymes’ gene polymorphisms with coronary restenosis. Life (Basel). 2022; 12 (2): 245. DOI: 10.3390/life12020245
  51. Girelli D., Martinelli N., Olivieri O., Pizzolo F., Friso S., Faccini G. et al. Hyperhomocysteinemia and mortality after coronary artery bypass grafting. PLoS. One. 2006; 1 (1): e83. DOI: 10.1371/journal.pone.0000083
  52. Anderson J.L., Muhlestein J.B., Horne B.D., Carlquist J.F., Bair T.L., Madsen T.E., Pearson R.R. Plasma homo-cysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation. 2000; 102 (11): 1227–1232. DOI: 10.1161/01.cir.102. 11.1227
  53. Botto N., Andreassi M.G., Rizza A., Berti S., Bevilacqua S., Federici C. et al. C677T polymorphism of the methylenetetrahydrofolate reductase gene is a risk factor of adverse events after coronary revascularization. Int. J. Cardiol. 2004; 96 (3): 341–345. DOI: 10.1016/j. ijcard.2003.06.022
  54. Ирасханов А.Ш., Бузиашвили Ю.И., Кокшенева И.В., Тугеева Э.Ф., Тимербулатова Т.Р. Значение медиаторов воспалительной реакции в механизмах атерогенеза и их влияние на результаты реваскуляризации миокарда у больных ишемической болезнью сердца. Креативная кардиология. 2023; 17 (3): 330–340. DOI: 10.24022/1997-3187-2023-17-3-330-340
  55. Абрамовских О.С., Белов Д.В., Зотова М.А., Фокин А.А., Лукин О.П. Генетические предикторы осложнений после аортокоронарного шунтирования. Креативная кардиология. 2023; 17 (1): 1–7. DOI: 10.24022/1997-3187-2023-17-1-11-24
  56. Pereira A.C., Miyakawa A.A., Lopes N.H., Soares P.R., de Oliveira S.A., Cesar L.A. et al. Dynamic regulation of MTHFR mRNA expression and C677T genotype modulate mortality in coronary artery disease patients after revascularization. Thromb. Res. 2007; 121 (1): 25–32. DOI: 10.1016/j.thromres.2007.03.004
  57. Panicker B.T., Veerapudran S., Damodaran D., Thomas R. The association of hyperhomocysteinemia with acute post-operative complications following coronary artery bypass grafting. J.T. Asian. Cardiovasc. Thorac. Ann. 2023; 31 (3): 210–214. DOI: 10.1177/ 02184923231156731
****
  1. McCully K.S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969; 56 (1): 111–128.
  2. Sultanova O.E., Chernysheva E.N., Kokhanov A.V., Sevostyanova I.V. Evolution of the trend of homocysteine research in cardiological practice. Modern Problems of Science and Education. 2020; 4 (in Russ.). DOI: 10.17513/spno.29937
  3. Della Corte V., Todaro F., Cataldi M., Tuttolomondo A. atherosclerosis and its related laboratory biomarkers. Int. J. Mol. Sci. 2023; 24 (21): 15546. DOI: 10.3390/ijms242115546
  4. Valeriani E., Pastori D., Astorri G., Porfidia A., Meni-chelli D., Pignatelli P. Factor V Leiden, prothrombin, MTHFR, and PAI-1 gene polymorphisms in patients with arterial disease: a comprehensive systematic-review and meta-analysis. Thromb. Res. 2023; 230: 74–83. DOI: 10.1016/j.thromres.2023.08.006
  5. Guo J., Gao Y., Ahmed M., Dong P., Gao Y., Gong Z. et al. Serum homocysteine level predictive capability for severity of restenosis post percutaneous coronary intervention. Front. Pharmacol. 2022; 13: 816059. DOI: 10.3389/fphar.2022.816059
  6. McCully K.S. Hyperhomocysteinemia and arteriosclerosis: historical perspectives. Clin. Chem. Lab. Med. 2005; 43 (10): 980–986. DOI: 10.1515/CCLM.2005.172
  7. Froese D.S., Huemer M., Suormala T., Burda P., Coelho D., Guéant J.L. et al. mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum. Mutat. 2016; 37 (5): 427–438. DOI: 10.1002/humu.22970
  8. Mudd S.H., Uhlendorf B.W., Freeman J.M., Finkelstein J.D., Shih V.E. Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity. Biochem. Biophys. Res. Commun. 1972; 46 (2): 905–912. DOI: 10.1016/s0006-291x(72)80227-4
  9. Kang S.S., Wong P.W., Zhou J.M., Sora J., Lessick M., Ruggie N., Grcevich G. Thermolabile methylenetetra-hydrofolate reductase in patients with coronary artery disease. Metabolism. 1988; 37 (7): 611–613. DOI: 10.1016/0026-0495(88)90076-5
  10. Shiran A., Remer E., Asmer I., Karkabi B., Zittan E., Cassel A. et al. Association of Vitamin B12 Deficiency with Homozygosity of the TT MTHFR C677T genotype, hyperhomocysteinemia, and endothelial cell dysfunction. Isr. Med. Assoc. J. 2015; 17 (5): 288–292.
  11. Raghubeer S., Matsha T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients. 2021; 13 (12): 4562. DOI: 10.3390/nu13124562
  12. Tanaka T., Scheet P., Giusti B., Bandinelli S., Piras M.G., Usala G. et al. Genomewide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet. 2009; 84 (4): 477–482. DOI: 10.1016/j.ajhg.2009.02.011
  13. Wilcken B. Medicine. Newborn screening: gaps in the evidence. Science. 2013; 342 (6155): 197–198. DOI: 10.1126/science.1243944
  14. Dedoussis G.V., Panagiotakos D.B., Pitsavos C., Chrysohoou C., Skoumas J., Choumerianou D., Stefanadis C. ATTICA Study Group. An association between the methylenetetrahydrofolate reductase (MTHFR) C677T mutation and inflammation markers related to cardiovascular disease. Int. J. Cardiol. 2005; 100 (3): 409–414. DOI: 10.1016/j.ijcard.2004.08.038
  15. Khalighi K., Cheng G., Mirabbasi S., Khalighi B., Wu Y., Fan W. Opposite impact of Methylene tetra-hydrofolate reductase C677T and Methylene tetrahyd-rofolate reductase A1298C gene polymorphisms on systemic inflammation. J. Clin. Lab. Anal. 2018; 32 (5): e22401. DOI: 10.1002/jcla.22401
  16. Alizadeh S., Djafarian K., Moradi S., Shab-Bidar S. C667T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocardial infarction: a systematic review and meta-analysis. Int. J. Cardiol. 2016; 217: 99–108. DOI: 10.1016/j. ijcard.2016.04.181
  17. Zalavras Ch.G., Giotopoulou S., Dokou E., Mitsis M., Ioannou H.V., Tzolou A. et al. Lack of association between the C677T mutation in the 5,10-methy-lenetetrahydrofolate reductase gene and venous thromboembolism in Northwestern Greece. Int. Angiol. 2002; 21 (3): 268–271.
  18. Casas J.P., Hingorani A.D., Bautista L.E., Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch. Neurol. 2004; 61 (11): 1652–1661. DOI: 10.1001/archneur.61.11.1652
  19. Nygård O., Nordrehaug J.E., Refsum H., Ueland P.M., Farstad M., Vollset S.E. Plasma homocysteine levels and mortality in patients with coronary artery disease. N. Engl. J. Med. 1997; 24; 337 (4): 230–236. DOI: 10.1056/NEJM199707243370403
  20. Stubbs P.J., Al-Obaidi M.K., Conroy R.M., Collinson P.O., Graham I.M., Noble I.M. Effect of plasma homocysteine concentration on early and late events in patients with acute coronary syndromes. Circulation. 2000; 102 (6): 605–610. DOI: 10.1161/01.cir.102.6.605
  21. Medvedev D.V., Zvyagina V.I. Molecular mechanisms of homocysteine’s toxic action. Russian Cardiology Bulletin. 2017; 12 (1): 52–57 (in Russ.).
  22. Bouzidi N., Hassine M., Fodha H., Ben Messaoud M., Maatouk F., Gamra H., Ferchichi S. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci. Rep. 2020; 10 (1): 10064. DOI: 10.1038/s41598-020-66937-3
  23. Akyürek Ö., Akbal E., Güneş F. Increase in the risk of ST elevation myocardial infarction is associated with homocysteine level. Arch. Med. Res. 2014; 45 (6): 501–506. DOI: 10.1016/j.arcmed.2014.08.003
  24. Chen C.J., Yang T.C., Chang C., Lu S.C., Chang P.Y. Homocysteine is a bystander for ST-segment elevation myocardial infarction: a case- control study. B.M.C. Cardiovasc. Disord. 2018; 18 (1): 33. DOI: 10.1186/s12872-018-0774-8
  25. Lakkakula B.V.K.S. Association between MTHFR 677C>T polymorphism and vascular complications in sickle cell disease: a meta-analysis. Transfus. Clin. Biol. 2019; 26 (4): 284–288. DOI: 10.1016/j.tracli.2019.01.003
  26. Luo Z., Lu Z., Muhammad I., Chen Y., Chen Q., Zhang J., Song Y. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids. Health. Dis. 2018; 17 (1): 191. DOI: 10.1186/s12944- 018-0837-y
  27. Morita H., Taguchi J., Kurihara H., Kitaoka M., Kaneda H., Kurihara Y. et al. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation. 1997; 95 (8): 2032–2036. DOI: 10.1161/01.cir.95.8.2032
  28. Kluijtmans L.A., Whitehead A.S. Methylenetetrahydro-folate reductase genotypes and predisposition to athero-thrombotic disease; evidence that all three MTHFR C677T genotypes confer different levels of risk. Eur. Heart. J. 2001; 22 (4): 294–299. DOI: 10.1053/euhj.2000.2239
  29. Wald D.S., Morris J.K., Wald N.J. Reconciling the evidence on serum homocysteine and ischaemic heart disease: a meta-analysis. PLoS. One. 2011; 6 (2): e16473. DOI: 10.1371/journal.pone.0016473
  30. Raina J.K., Sharma M., Panjaliya R.K., Dogra V., Bakaya A., Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with Coronary Artery Disease (CAD). B.M.C. Cardiovasc. Disord. 2020; 20 (1): 340. DOI: 10.1186/s12872-020-01618-7
  31. Raina J.K., Sharma M., Panjaliya R.K., Bhagat M., Sharma R., Bakaya A., Kumar P. Methylenetetra-hydrofolate reductase C677T and methionine synthase A2756G gene polymorphisms and associated risk of cardiovascular diseases: a study from Jammu region. Indian. Heart. J. 2016; 68 (3): 421–430. DOI: 10.1016/j.ihj.2016.02.009
  32. Abd El-Aziz T.A., Mohamed R.H. Influence of MTHFR C677T gene polymorphism in the development of cardiovascular disease in Egyptian patients with rheuma-toid arthritis. Gene. 2017; 610: 127–132. DOI: 10.1016/j.gene.2017.02.015
  33. Li Y.Y. Methylenetetrahydrofolate reductase C677T gene polymorphism and coronary artery disease in a Chinese Han population: a meta- analysis. Metabolism. 2012; 61 (6): 846–852. DOI: 10.1016/j.metabol.2011.10.013
  34. Mallhi T.H., Shahid M., Rehman K., Khan Y.H., Alana-zi A.S., Alotaibi N.H. et al. Biochemical Association of MTHFR C677T Polymorphism with Myocardial Infarction in the Presence of Diabetes Mellitus as a Risk Factor. Metabolites. 2023; 13 (2): 251. DOI: 10.3390/metabo13020251
  35. Samii A., Aslani S., Imani D., Razi B., Samaneh Tabaee S., Jamialahmadi T., Sahebkar A. MTHFR gene polymorp-hisms and susceptibility to myocardial infarction: evidence from meta-analysis and trial sequential analysis. Int. J. Cardiol. Heart Vasc. 2023; 49: 101293. DOI: 10.1016/j.ijcha.2023.101293
  36. Kang S., Wu Y., Liu L., Zhao X., Zhang D. Association of the A1298C polymorphism in MTHFR gene with ischemic stroke. J. Clin. Neurosci. 2014; 21 (2): 198–202. DOI: 10.1016/j.jocn.2013.04.017
  37. Pizova N.V., Pizov N.A. Hyperhomocysteinemia and ischemic stroke. Medical Council. 2017; 10: 12–14 (in Russ.). DOI: 10.21518/2079- 701X-2017-10-12-17
  38. Kumar A., Kumar P., Kathuria P., Misra S., Pandit A.K., Chakravarty K., Prasad M. Genetics of ischemic stroke: an Indian scenario. Neurol. India. 2016; 64 (1): 29–37. DOI: 10.4103/0028-3886.173645
  39. Paradkar M.U., Padate B., Shah S.A.V., Vora H., Asha-vaid T.F. association of genetic variants with hyperhomo-cysteinemia in indian patients with thrombosis. Indian. J. Clin. Biochem. 2020; 35 (4): 465–473. DOI: 10.1007/s12291-019-00846-9
  40. Zhao L., Li T., Dang M., Li Y., Fan H., Hao Q. et al. Association of methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C>T) gene polymorphism with ischemic stroke risk in different populations: an updated meta-analysis. Front. Genet. 2023; 13: 1021423. DOI: 10.3389/ fgene.2022.1021423
  41. Schnyder G., Roffi M., Pin R., Flammer Y., Lange H., Eberli F.R. et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N. Engl. J. Med. 2001; 345 (22): 1593–1600. DOI: 10.1056/NEJMoa011364
  42. Wong C.K., Hammett C.J., The R., French J.K., Gao W., Webber B.J. et al. Lack of association between baseline plasma homocysteine concentrations and restenosis rates after a first elective percutaneous coronary intervention without stenting. Heart. 2004; 90 (11): 1299–1302. DOI: 10.1136/hrt.2003.020701
  43. Svarovskaya A.V., Arzhanik M.B., Ogurkova O.N., Kuzheleva E.A., Baev A.E., Garganeeva A.A. Prognostic value of laboratory markers in the development of cardiac outcomes in patients with stable coronary artery disease after elective endovascular revascularization. Cardiology. 2021; 61 (9): 33–39. DOI: 10.18087/cardio.2021.9.n1528
  44. Kosokabe T., Okumura K., Sone T., Kondo J., Tsuboi H., Mukawa H. et al. Relation of a common methylen-etetrahydrofolate reductase mutation and plasma homocysteine with intimal hyperplasia after coronary stenting. Circulation. 2001; 103 (16): 2048–2054. DOI: 10.1161/01. cir.103.16.2048
  45. Han T.W., Zhou S.S., Li J.T., Tian F., Mu Y., Jing J. et al. Homocysteine is associated with the progression of non-culprit coronary lesions in elderly acute coronary syndrome patients after percutaneous coronary intervention. J. Geriatr. Cardiol. 2016; 13 (4): 299–305. DOI: 10.11909/j.issn.1671-5411.2016.04.010
  46. Yeh J.K., Chen C.C., Hsieh M.J., Tsai M.L., Yang C.H., Chen D.Y. et al. Impact of homocysteine level on long-term cardiovascular outcomes in patients after coronary artery stenting. J. Atheroscler. Thromb. 2017; 24 (7): 696–705. DOI: 10.5551/jat.36434
  47. Zhang Z., Xiao S., Yang C., Ye R., Hu X., Chen X. Association of elevated plasma homocysteine level with restenosis and clinical outcomes after percutaneous coronary interventions: a systemic review and meta-analysis. Cardiovasc. Drugs. Ther. 2019; 33 (3): 353–361. DOI: 10.1007/s10557-019-06866-0
  48. Denisova A.G., Tatarchenko I.P., Pozdnyakova N.V., Kulyutsina E.R., Levashova O.A. Hyperhomocysteinemia and arterial endothelial dysfunction in assessing the risk of cardiovascular complications in patients with diabetes. Health and education in the XXI century. 2016; 18 (2): 25–29 (in Russ.).
  49. Ma S.C., Hao Y.J., Jiao Y., Wang Y.H., Xu L.B., Mao C.Y. et al. Homocysteine induced oxidative stress through TLR4/NF κB/DNMT1 mediated LOX 1 DNA methylation in endothelial cells. Mol. Med. Rep. 2017; 16 (6): 9181–9188. DOI: 10.3892/mmr.2017.7753
  50. Timizheva K.B., Ahmed A.A.M., Ait Aissa A., Aghajanyan A.V., Tskhovrebova L.V., Azova M.M. Association of the DNA methyltransferase and folate cycle enzymes’ gene polymorphisms with coronary restenosis. Life (Basel). 2022; 12 (2): 245. DOI: 10.3390/life12020245
  51. Girelli D., Martinelli N., Olivieri O., Pizzolo F., Friso S., Faccini G. et al. Hyperhomocysteinemia and mortality after coronary artery bypass grafting. PLoS. One. 2006; 1 (1): e83. DOI: 10.1371/journal.pone.0000083
  52. Anderson J.L., Muhlestein J.B., Horne B.D., Carlquist J.F., Bair T.L., Madsen T.E., Pearson R.R. Plasma homo-cysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation. 2000; 102 (11): 1227–1232. DOI: 10.1161/01.cir.102. 11.1227
  53. Botto N., Andreassi M.G., Rizza A., Berti S., Bevilacqua S., Federici C. et al. C677T polymorphism of the methylenetetrahydrofolate reductase gene is a risk factor of adverse events after coronary revascularization. Int. J. Cardiol. 2004; 96 (3): 341–345. DOI: 10.1016/j. ijcard.2003.06.022
  54. Iraskhanov A.Sh., Buziashvili Yu.I., Koksheneva I.V., Tugeeva E.F., Timerbulatova T.R. The importance of inflammatory response mediators in the mechanisms of atherogenesis and their influence on the results of myocardial revascularization in patients with coronary heart disease. Creative Cardiology. 2023; 17 (3): 330–340 (in Russ.). DOI: 10.24022/1997-3187-2023-17-3-330-340
  55. Abramovskikh O.S., Belov D.V., Zotova M.A., Fokin A.A., Lukin O.P. Genetic predictors of complications after coronary artery bypass grafting. Creative Cardiology. 2023; 17 (1): 1–7 (in Russ.). DOI: 10.24022/1997-3187-2023-17-1-11-24
  56. Pereira A.C., Miyakawa A.A., Lopes N.H., Soares P.R., de Oliveira S.A., Cesar L.A. et al. Dynamic regulation of MTHFR mRNA expression and C677T genotype modulate mortality in coronary artery disease patients after revascularization. Thromb. Res. 2007; 121 (1): 25–32. DOI: 10.1016/j.thromres.2007.03.004
  57. Panicker B.T., Veerapudran S., Damodaran D., Thomas R. The association of hyperhomocysteinemia with acute post-operative complications following coronary artery bypass grafting. J.T. Asian. Cardiovasc. Thorac. Ann. 2023; 31 (3): 210–214. DOI: 10.1177/02184923231156731

Об авторах

  • Бузиашвили Юрий Иосифович, д-р мед. наук, профессор, академик РАН, руководитель клинико-диагностического отделения; ORCID
  • Кокшенева Инна Валериевна, д-р мед. наук, ст. науч. сотр. клинико-диагностического отделения; ORCID
  • Турахонов Темур Курбаналиевич, канд. мед. наук, врач-кардиолог клинико-диагностического отделения; ORCID
  • Бузиашвили Виктория Юрьевна, канд. мед. наук, мл. науч. сотр. клинико-диагностического отделения; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A