Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Периферическая хеморецепция при хронической сердечной недостаточности: подходы к изучению и клиническое значение

Авторы: Трембач Н.В., Трембач И.А., Заболотских И.Б.

Организация:
ФГБОУ ВО «Кубанский государственный медицинской университет» Минздрава России, Краснодар, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2024-21-3-182-200

УДК: 612.285.1:616.12-008.64

Библиографическая ссылка: Клиническая физиология кровообращения. 2024; 21 (3): 182-200

Цитировать как: Трембач Н.В., Трембач И.А., Заболотских И.Б. . Периферическая хеморецепция при хронической сердечной недостаточности: подходы к изучению и клиническое значение. Клиническая физиология кровообращения. 2024; 21 (3): 182-200. DOI: 10.24022/1814-6910-2024-21-3-182-200

Ключевые слова: хеморефлекс, рефлекторная регуляция, кардиореспираторная система

Поступила / Принята к печати:  26.08.2024 / 23.09.2024

Скачать (Download)


Аннотация

Периферическая хеморецепция, осуществляемая каротидными и аортальными хеморецепторами, играет ключевую роль в патогенезе и прогрессировании хронической сердечной недостаточности (ХСН). Эти рецепторы реагируют на изменения парциального давления кислорода и углекислого газа в артериальной крови, инициируя адаптивные кардиореспираторные и вегетативные реакции. У пациентов с ХСН наблюдается повышенная чувствительность периферического хеморефлекса, что приводит к симпатической гиперактивности, ухудшению дыхательной функции и повышенному риску аритмий.

Оценка чувствительности периферического хеморефлекса – важный диагностический инструмент. Основные методы исследования – гипоксический тест, тест с однократным вдыханием гиперкапнической газовой смеси, тест с возвратным дыханием и проба с задержкой дыхания. Гипоксический тест считается «золотым стандартом», так как он специфически и точно измеряет реакцию периферических хеморецепторов на гипоксию.

Повышенная чувствительность хеморефлекса ассоциирована с неблагоприятным прогнозом у пациентов с ХСН, включая повышенный риск смертности, аритмий и повторных госпитализаций. Это делает хеморефлекс перспективной терапевтической мишенью. Возможные интервенции включают применение бета-блокаторов, ингибиторов ренин-ангиотензин-альдостероновой системы, респираторную терапию и даже денервацию каротидных телец.

Таким образом, изучение и модуляция периферической хеморецепции у пациентов с ХСН имеет большое клиническое значение. Ранняя диагностика повышенной чувствительности хеморефлекса и индивидуализированный подход к лечению могут улучшить прогноз и качество жизни пациентов с ХСН.

Литература

  1. Ortega-Sáenz P., Lopez-Barneo J. Physiology of the carotid body: from molecules to disease. Annu. Rev. Physiol. 2020; 82: 127–149. DOI: 10.1146/annurev-physiol-020518-114427
  2. Fitzgerald R.S. The carotid body: terrestrial mammals’ most important peripheral neuroreceptor? J. Neurol. Neurophysiol. 2016; 7: 1000407. DOI: 10.4172/2155-9562.1000407
  3. Prabhakar N.R., Peng Y.J., Nanduri J. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7: F1000 Faculty Rev-1900. DOI: 10.12688/f1000research.16247
  4. Del Rio R. The carotid body and its relevance in pathophysiology. Exp Physiol. 2015; 100 (2): 121–123. DOI: 10.1113/expphysiol.2014.079350
  5. Narkiewicz K., Ratcliffe L.E.K., Hart E.C., Briant L.J.B., Chrostowska M., Wolf J. et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl. Sci. 2016; 1 (5): 313–324. DOI: 10.1016/j.jacbts.2016.06.004
  6. Marcus N.J., Del Rio R., Schultz E.P., Xia X.-H., Schultz H.D. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J. Physiol. 2014; 592 (2): 391–408. DOI: 10.1113/jphysiol.2013.266221
  7. Schultz H.D., Marcus N.J., Del Rio R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp. Physiol. 2015; 100 (2): 124–129. DOI: 10.1113/expphysiol.2014.079517
  8. Toledo C., Andrade D.C., Lucero C., Schultz H.D., Marcus N., Retamal M. et al. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J. Physiol. 2017; 595 (1): 43–51. DOI: 10.1113/JP272075
  9. Trembach N., Zabolotskikh I. Evaluation of breath-holding test in assessment of peripheral chemoreflex sensitivity in patients with chronic heart failure. Open Respir. Med. J. 2017; 11: 67–74. DOI: 10.2174/1874306401711010067
  10. Giannoni A., Mirizzi G., Aimo A., Emdin M., Passino C. Peripheral reflex feedbacks in chronic heart failure: is it time for a direct treatment? World J. Cardiol. 2015; 7 (12): 824–828. DOI: 10.4330/wjc.v7.i12.824
  11. Keir D.A., Duffin J., Floras, J.S. Measuring peripheral chemoreflex hypersensitivity in heart failure. Front. Physiol. 2020; 11: 595486. DOI: 10.3389/fphys.2020.595486
  12. Kataoka Y., Sales A.R.K., Rodrigues A.G., Goes-Santos B.R., Azevedo L.F., Groehs R.V. et al. Abnormal neurovascular control during central and peripheral chemoreceptors stimulation in heart failure patients with preserved ejection fraction. Clin. Auton. Res. 2024; 34 (3): 363–374. DOI: 10.1007/s10286-024-01041-4
  13. Tubek S., Niewinski P., Paleczny B., Langner-Hetmanczuk A., Banasiak W., Ponikowski P. Acute hyperoxia reveals tonic influence of peripheral chemoreceptors on systemic vascular resistance in heart failure patients. Sci. Rep. 2021; 11 (1): 20823. DOI: 10.1038/s41598-021-99159-2
  14. Collins S.É., Phillips D.B., McMurtry M.S., Bryan T.L., Paterson D.I., Wong E. et al. The effect of carotid chemoreceptor inhibition on exercise tolerance in chronic heart failure. Front. Physiol. 2020; 11: 195. DOI: 10.3389/fphys.2020.00195
  15. Kulej-Lyko K., Niewinski P., Tubek S., Krawczyk M., Kosmala W., Ponikowski P. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction – a role of tonic activity and acute reflex response. Front. Physiol. 2022; 13: 911636. DOI: 10.3389/fphys.2022.911636
  16. Giannoni A., Gentile F., Buoncristiani F., Borrelli C., Sciarrone P., Spiesshoefer J. et al. Chemoreflex and baroreflex sensitivity hold a strong prognostic value in chronic heart failure. JACC Heart Fail. 2022; 10 (9): 662–676. DOI: 10.1016/j.jchf.2022.02.006
  17. Giannoni A., Emdin M., Poletti R., Bramanti F., Prontera C., Piepoli M., Passino C. Clinical significance of chemosensitivity in chronic heart failure: influence on neurohormonal derangement, Cheyne-Stokes respiration and arrhythmias. Clin. Sci. (Lond). 2008; 114 (7): 489–497. DOI: 10.1042/CS20070292
  18. Chua T.P., Clark A.L., Amadi A.A., Coats A.J. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J. Am. Coll. Cardiol. 1996; 27 (3): 650–657. DOI: 10.1016/0735-1097(95)00523-4
  19. Di Vanna A., Braga A.M., Laterza M.C., Ueno L.M., Rondon M.U., Barretto A.C. et al. Blunted muscle vasodilatation during chemoreceptor stimulation in patients with heart failure. Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (1): H846–52. DOI: 10.1152/ajpheart.00156.2007
  20. Niewinski P. Pathophysiology and potential clinical applications for testing of peripheral chemosensitivity in heart failure. Curr. Heart Fail. Rep. 2014; 11 (2): 126–133. DOI: 10.1007/s11897-014-0188-6
  21. Callegaro C.C., Martinez D., Ribeiro P.A., Brod M., Ribeiro J.P. Augmented peripheral chemoreflex in patients with heart failure and inspiratory muscle weakness. Respir. Physiol. Neurobiol. 2010; 171 (1): 31–35. DOI: 10.1016/j.resp.2010.01.009
  22. Despas F., Detis N., Dumonteil N., Labrunee M., Bellon B., Franchitto N. et al. Excessive sympathetic activation in heart failure with chronic renal failure: role of chemoreflex activation. J. Hypertens. 2009; 27 (9): 1849–1854. DOI: 10.1097/HJH.0b013e32832e8d0f
  23. Ponikowski P., Chua T.P., Piepoli M., Ondusova D., Webb-Peploe K., Harrington D. et al. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation. 1997; 96 (8): 2586–2594. DOI: 10.1161/01.cir.96.8.2586
  24. Ponikowski P., Chua T.P., Anker S.D., Francis D.P., Doehner W., Banasiak W. et al. Peripheral chemorecep-tor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001; 104 (5): 544–549. DOI: 10.1161/hc3101.093699
  25. Chua T.P., Ponikowski P., Webb-Peploe K., Harrington D., Anker S.D., Piepoli M., Coats A.J. Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur. Heart J. 1997; 18 (3): 480–486. DOI: 10.1093/oxfordjournals.eurheartj.a015269
  26. Hennersdorf M.G., Hillebrand S., Perings C., Strauer B.E. Chemoreflexsensitivity in chronic heart failure patients. Eur. J. Heart Fail. 2001; 3 (6): 679–684. DOI: 10.1016/s1388-9842(01)00189-1
  27. Edgell H., McMurtry M.S., Haykowsky M.J., Paterson I., Ezekowitz J.A., Dyck J.R., Stickland M.K. Peripheral chemoreceptor control of cardiovascular function at rest and during exercise in heart failure patients. J. Appl. Physiol. (1985). 2015; 118 (7): 839–848. DOI: 10.1152/japplphysiol.00898.2014
  28. Chua T.P., Coats A.J. The reproducibility and comparability of tests of the peripheral chemoreflex: comparing the transient hypoxic ventilatory drive test and the single-breath carbon dioxide response test in healthy subjects. Eur. J. Clin. Invest. 1995; 25 (12): 887–892. DOI: 10.1111/j.1365-2362.1995.tb01962.x
  29. Ponikowski P., Chua T.P., Piepoli M., Amadi A.A., Harrington D., Webb-Peploe K. et al. Chemoreceptor dependence of very low frequency rhythms in advanced chronic heart failure. Am. J. Physiol. 1997; 272 (1 Pt 2): H438–47. DOI: 10.1152/ajpheart.1997.272.1.H438
  30. McСlean P., Phillipson E., Martinez D., Zamel N. Single breath of CO2 as a clinical test of the peripheral chemoreflex. J. Appl. Physiol. 1988; 64 (1): 84–89. DOI: 10.1152/JAPPL.1988.64.1.84
  31. Mirizzi G., Giannoni A., Ripoli A., Iudice G., Bramanti F., Emdin M., Passino C. Prediction of the chemoreflex gain by common clinical variables in heart failure. PloS One. 2016; 11 (4): e0153510. DOI: 10.1371/journal.pone.0153510
  32. Duffin J. Measuring the respiratory chemoreflexes in humans. Respir. Physiol. Neurobiol. 2011; 177: 71–79. DOI: 10.1016/j.resp.2011.04.009
  33. Boulet L., Jamieson A., Day T.A. The effects of prior hyperventilation duration on central chemoreflex responses using the “Duffin” hyperoxic rebreathing test (1092.16). The FASEB Journal. 2014; 28. DOI: 10.1096/FASEBJ.28.1_SUPPLEMENT.1092.16
  34. Dahan A., Nieuwenhuijs D., Teppema L. Plasticity of central chemoreceptors: effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Med. 2007; 4 (7): e239. DOI: 10.1371/journal.pmed.0040239
  35. Narkiewicz K., Pesek C.A., van de Borne P.J., Kato M., Somers V.K. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation. 1999; 100 (3): 262–267. DOI: 10.1161/01.cir.100.3.262
  36. Sun S.Y., Wang W., Zucker I.H., Schultz H.D. Enhanced peripheral chemoreflex function in conscious rabbits with pacing-induced heart failure. J. Appl. Physiol. (1985). 1999; 86 (4): 1264–1272. DOI: 10.1152/jappl.1999.86.4.1264
  37. Ciarka A., Cuylits N., Vachiery J.L., Lamotte M., Degaute J.P., Naeije R., van de Borne P. Increased peripheral chemoreceptors sensitivity and exercise ventilation in heart transplant recipients. Circulation. 2006; 113 (2): 252–257. DOI: 10.1161/CIRCULATIONAHA.105.560649
  38. Parkes M.J. Breath-holding and its breakpoint. Exp. Physiol. 2006; 91 (1): 1–15. DOI: 10.1113/expphysiol.2005.031625
  39. Заболотских И.Б., Баутин А.Е., Григорьев Е.В., Грицан А.И., Лебединский К.М., Потиевская В.И. и др. Периоперационное ведение пациентов с артериальной гипертензией. Методические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов». Вестник интенсивной терапии имени А.И. Салтанова. 2024; 3: 7–26. DOI: 10.21320/1818-474X-2024-3-7-26
  40. Daly W.J., Bondurant S. Effects of oxygen breathing on the heart rate, blood pressure, and cardiac index of normal men – resting, with reactive hyperemia, and after atropine. J. Clin. Invest. 1962; 41 (1): 126–132. DOI: 10.1172/JCI104454
  41. Ponikowski P., Francis D.P., Piepoli M.F., Davies L.C., Chua T.P., Davos C.H. et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 2001; 103 (7): 967–972. DOI: 10.1161/01.cir.103.7.967
  42. Haque W.A., Boehmer J., Clemson B.S., Leuenberger U.A., Silber D.H., Sinoway L.I. Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J. Am. Coll. Cardiol. 1996; 27 (2): 353–357. DOI: 10.1016/0735-1097(95)00474-2
  43. Bascom D.A., Clement I.D., Dorrington K.L., Robbins P.A. Effects of dopamine and domperidone on ventilation during isocapnic hypoxia in humans. Respir. Physiol. 1991; 85 (3): 319–328. DOI: 10.1016/0034-5687(91)90071-p
  44. van de Borne P., Oren R., Somers V.K. Dopamine depresses minute ventilation in patients with heart failure. Circulation. 1998; 98 (2): 12 6–131. DOI: 10.1161/01.cir.98.2.126
  45. Giannoni A., Emdin M., Bramanti F., Iudice G., Francis D.P., Barsotti A. et al. Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J. Am. Coll. Cardiol. 2009; 53 (21): 1975–1980. DOI: 10.1016/j.jacc.2009.02.030
  46. Niewinski P. Carotid body modulation in systolic heart failure from the clinical perspective. J. Physiol. 2017; 595 (1): 53–61. DOI: 10.1113/JP271692
  47. Basting T.M., Burke P.G., Kanbar R., Viar K.E., Stornetta D.S., Stornetta R.L., Guyenet P.G. Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis. J. Neurosci. 2015; 35 (2): 527–543. DOI: 10.1523/JNEUROSCI.2923-14.2015
  48. Floras J.S., Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 2015; 36 (30): 1974–1982. DOI: 10.1093/eurheartj/ehv087
  49. Kious K.W., Philipose A., Smith L.J., Kemble J.P., Twohey S.C.E., Savage K. et al. Peripheral chemoreflex modulation of renal hemodynamics and renal tissue PO2 in chronic heart failure with reduced ejection fraction. Front. Physiol. 2022; 13: 955538. DOI: 10.3389/fphys.2022.955538
  50. Marcus N.J., Pugge C., Mediratta J., Schiller A.M., Del Rio R., Zucker I.H., Schultz H.D. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2015; 309: H259–H266. DOI: 10.1152/ajpheart.00268.2015
  51. Zannad F., Rossignol P. Cardiorenal syndrome revisited. Circulation. 2018; 138 (9): 929–944. DOI: 10.1161/CIRCULATIONAHA.117.028814
  52. Costanzo M.R. The cardiorenal syndrome in heart failure. Cardiol. Clin. 2022; 40 (2): 219–235. DOI: 10.1016/j.ccl.2021.12.010
  53. Li Y.-L., Xia X.-H., Zheng H., Gao L., Li Y.-F., Liu D. et al. Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc. Res. 2006; 71 (1): 129–138. DOI: 10.1016/j.cardiores.2006.03.017
  54. Cundrle I. Jr, Johnson B.D., Rea R.F., Scott C.G., Somers V.K., Olson L.J. Modulation of ventilatory reflex control by cardiac resynchronization therapy. J. Card. Fail. 2015; 21 (5): 367–373. DOI: 10.1016/j.cardfail.2014.12.013
  55. Mezzani A., Pistono M., Agostoni P., Giordano A., Gnemmi M., Imparato A. et al. Exercise gas exchange in continuous-flow left ventricular assist device recipients. PLoS One. 2018; 13 (6): e0187112. DOI: 10.1371/journal.pone.0187112
  56. Apostolo A., Paolillo S., Contini M., Vignati C., Tarzia V., Campodonico J. et al. Comprehensive effects of left ventricular assist device speed changes on alveolar gas exchange, sleep ventilatory pattern, and exercise performance. J. Heart Lung. Transplant. 2018; 37 (11): 1361–1371. DOI: 10.1016/j.healun.2018.07.005
  57. Imadojemu V.A., Mawji Z., Kunselman A., Gray K.S., Hogeman C.S., Leuenberger U.A. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. Chest. 2007; 131 (5): 1406–1413. DOI: 10.1378/chest.06-2580.
  58. Spicuzza L., Bernardi L., Balsamo R., Ciancio N., Polosa R, Di Maria G. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome. Chest. 2006; 130: 774–779. DOI: 10.1378/chest.130.3.774
  59. Fontana M., Emdin M., Giannoni A., Iudice G., Baruah R., Passino C. Effect of acetazolamide on chemosensitivity, Cheyne-Stokes respiration, and response to effort in patients with heart failure. Am. J. Cardiol. 2011; 107 (11): 1675–1680. DOI: 10.1016/j.amjcard.2011.01.060
  60. Lorenzi-Filho G., Rankin F., Bies I., Douglas Bradley T. Effects of inhaled carbon dioxide and oxygen on cheyne-stokes respiration in patients with heart failure. Am. J. Respir. Crit. Care Med. 1999; 159 (5 Pt 1): 1490–1498. DOI: 10.1164/ajrccm.159.5.9810040.
  61. Giannoni A., Baruah R., Willson K., Mebrate Y., Mayet J., Emdin M. et al. Real-time dynamic carbon dioxide administration: a novel treatment strategy for stabilization of periodic breathing with potential application to central sleep apnea. J. Am. Coll. Cardiol. 2010; 56 (22): 1832–1837. DOI: 10.1016/j.jacc.2010.05.053
  62. Del Rio R., Marcus N.J., Schultz H.D. Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J. Am. Coll. Cardiol. 2013; 62 (25): 2422–2430. DOI: 10.1016/j.jacc.2013.07.079
  63. Tubek S., Niewinski P., Reczuch K., Janczak D., Rucinski A., Paleczny B. et al. Effects of selective carotid body stimulation with adenosine in conscious humans. J. Physiol. 2016; 594 (21): 6225–6240. DOI: 10.1113/JP272109
  64. Javaheri S., Parker T.J., Wexler L., Liming J.D., Lindower P., Roselle G.A. Effect of Theophylline on sleep-disordered breathing in heart failure. N. Engl. J. Med. 1996; 335 (8): 562–567. DOI: 10.1056/NEJM 199608223350805
  65. Javaheri S., Guerra L. Lung function, hypoxic and hypercapnic ventilatory responses, and respiratory muscle strength in normal subjects taking oral theophylline. Thorax. 1990; 45 (10): 743–747.
  66. Yamauchi M., Dostal J., Kimura H., Strohl K.P. Effects of buspirone on posthypoxic ventilatory behavior in the C57BL/6J and A/J mouse strains. J. Appl. Physiol. 2008; 105 (2): 518–526. DOI: 10.1152/japplphysiol.00069.2008.
  67. Taylor N.C., Li A., Nattie E.E. Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats. J. Physiol. 2005; 566 (Pt 2): 543–557. DOI: 10.1113/jphysiol.2005.083873
  68. Zeitler E.P., Abraham W.T. Novel devices in heart failure: BAT, atrial shunts, and phrenic nerve stimulation. JACC Heart Fail. 2020; 8 (4): 251–264. DOI: 10.1016/j.jchf.2019.11.006
  69. Heusser K., Thöne A., Lipp A., Menne J., Beige J., Reuter H. et al. Efficacy of electrical baroreflex activation is independent of peripheral chemoreceptor modulation. Hypertension. 2020; 75 (1): 257–264. DOI: 10.1161/HYPERTENSIONAHA.119.13925
  70. Victor R.G. Carotid baroreflex activation therapy for resistant hypertension. Nat. Rev. Cardiol. 2015; 12 (8): 451–463. DOI: 10.1038/nrcardio.2015.96
  71. Zile M.R., Lindenfeld J., Weaver F.A., Zannad F., Galle E., Rogers T., Abraham W.T. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 2020; 76. DOI: 10.1016/j.jacc.2020.05.015
  72. Dell’Oro R., Gronda E., Seravalle G., Costantino G., Alberti L., Baronio B. et al. Restoration of normal sympathetic neural function in heart failure following baroreflex activation therapy: final 43-month study report. J. Hypertens. 2017; 35: 2532–2536. DOI: 10.1097/HJH.0000000000001498
  73. Трембач Н.В. Влияние чувствительности периферического хеморефлекса на частоту критических инцидентов в течение сочетанной анестезии. Кубанский научный медицинский вестник. 2018; 25 (3): 113–118. DOI: 10.25207/1608-6228-2018-25-3-113-118
  74. Trembach N.V. The influence of peripheral chemoreflex sensitivity on the critical incidents rate during combined anesthesia. Kuban Scientific Medical Bulletin. 2018; 25 (3): 113–118 (in Russ.). DOI: 10.25207/1608-6228-2018-25-3-113-118
  75. Числова А.П., Юрлов И.А. Влияние хронической гипоксемии и высокой концентрации гемоглобина на развитие осложнений в раннем послеоперационном периоде у больных с врожденными пороками сердца цианотического типа после операций с искусственным кровообращением. Клиническая физиология кровообращения. 2017; 14 (4): 220–225. DOI: 10.24022/1814-6910-2017-14-4-220-225
****
  1. Ortega-Sáenz P., Lopez-Barneo J. Physiology of the carotid body: from molecules to disease. Annu. Rev. Physiol. 2020; 82: 127–149. DOI: 10.1146/annurev-physiol-020518-114427
  2. Fitzgerald R.S. The carotid body: terrestrial mammals’ most important peripheral neuroreceptor? J. Neurol. Neurophysiol. 2016; 7: 1000407. DOI: 10.4172/2155-9562.1000407
  3. Prabhakar N.R., Peng Y.J., Nanduri J. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7: F1000 Faculty Rev-1900. DOI: 10.12688/f1000research.16247
  4. Del Rio R. The carotid body and its relevance in pathophysiology. Exp Physiol. 2015; 100 (2): 121–123. DOI: 10.1113/expphysiol.2014.079350
  5. Narkiewicz K., Ratcliffe L.E.K., Hart E.C., Briant L.J.B., Chrostowska M., Wolf J. et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl. Sci. 2016; 1 (5): 313–324. DOI: 10.1016/j.jacbts.2016.06.004
  6. Marcus N.J., Del Rio R., Schultz E.P., Xia X.-H., Schultz H.D. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J. Physiol. 2014; 592 (2): 391–408. DOI: 10.1113/jphysiol.2013.266221
  7. Schultz H.D., Marcus N.J., Del Rio R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp. Physiol. 2015; 100 (2): 124–129. DOI: 10.1113/expphysiol.2014.079517
  8. Toledo C., Andrade D.C., Lucero C., Schultz H.D., Marcus N., Retamal M. et al. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J. Physiol. 2017; 595 (1): 43–51. DOI: 10.1113/JP272075
  9. Trembach N., Zabolotskikh I. Evaluation of breath-holding test in assessment of peripheral chemoreflex sensitivity in patients with chronic heart failure. Open Respir. Med. J. 2017; 11: 67–74. DOI: 10.2174/1874306401711010067
  10. Giannoni A., Mirizzi G., Aimo A., Emdin M., Passino C. Peripheral reflex feedbacks in chronic heart failure: is it time for a direct treatment? World J. Cardiol. 2015; 7 (12): 824–828. DOI: 10.4330/wjc.v7.i12.824
  11. Keir D.A., Duffin J., Floras, J.S. Measuring peripheral chemoreflex hypersensitivity in heart failure. Front. Physiol. 2020; 11: 595486. DOI: 10.3389/fphys.2020.595486
  12. Kataoka Y., Sales A.R.K., Rodrigues A.G., Goes-Santos B.R., Azevedo L.F., Groehs R.V. et al. Abnormal neurovascular control during central and peripheral chemoreceptors stimulation in heart failure patients with preserved ejection fraction. Clin. Auton. Res. 2024; 34 (3): 363–374. DOI: 10.1007/s10286-024-01041-4
  13. Tubek S., Niewinski P., Paleczny B., Langner-Hetmanczuk A., Banasiak W., Ponikowski P. Acute hyperoxia reveals tonic influence of peripheral chemoreceptors on systemic vascular resistance in heart failure patients. Sci. Rep. 2021; 11 (1): 20823. DOI: 10.1038/s41598-021-99159-2
  14. Collins S.É., Phillips D.B., McMurtry M.S., Bryan T.L., Paterson D.I., Wong E. et al. The effect of carotid chemoreceptor inhibition on exercise tolerance in chronic heart failure. Front. Physiol. 2020; 11: 195. DOI: 10.3389/fphys.2020.00195
  15. Kulej-Lyko K., Niewinski P., Tubek S., Krawczyk M., Kosmala W., Ponikowski P. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction – a role of tonic activity and acute reflex response. Front. Physiol. 2022; 13: 911636. DOI: 10.3389/fphys.2022.911636
  16. Giannoni A., Gentile F., Buoncristiani F., Borrelli C., Sciarrone P., Spiesshoefer J. et al. Chemoreflex and baroreflex sensitivity hold a strong prognostic value in chronic heart failure. JACC Heart Fail. 2022; 10 (9): 662–676. DOI: 10.1016/j.jchf.2022.02.006
  17. Giannoni A., Emdin M., Poletti R., Bramanti F., Prontera C., Piepoli M., Passino C. Clinical significance of chemosensitivity in chronic heart failure: influence on neurohormonal derangement, Cheyne-Stokes respiration and arrhythmias. Clin. Sci. (Lond). 2008; 114 (7): 489–497. DOI: 10.1042/CS20070292
  18. Chua T.P., Clark A.L., Amadi A.A., Coats A.J. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J. Am. Coll. Cardiol. 1996; 27 (3): 650–657. DOI: 10.1016/0735-1097(95)00523-4
  19. Di Vanna A., Braga A.M., Laterza M.C., Ueno L.M., Rondon M.U., Barretto A.C. et al. Blunted muscle vasodilatation during chemoreceptor stimulation in patients with heart failure. Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (1): H846–52. DOI: 10.1152/ajpheart.00156.2007
  20. Niewinski P. Pathophysiology and potential clinical applications for testing of peripheral chemosensitivity in heart failure. Curr. Heart Fail. Rep. 2014; 11 (2): 126–133. DOI: 10.1007/s11897-014-0188-6
  21. Callegaro C.C., Martinez D., Ribeiro P.A., Brod M., Ribeiro J.P. Augmented peripheral chemoreflex in patients with heart failure and inspiratory muscle weakness. Respir. Physiol. Neurobiol. 2010; 171 (1): 31–35. DOI: 10.1016/j.resp.2010.01.009
  22. Despas F., Detis N., Dumonteil N., Labrunee M., Bellon B., Franchitto N. et al. Excessive sympathetic activation in heart failure with chronic renal failure: role of chemoreflex activation. J. Hypertens. 2009; 27 (9): 1849–1854. DOI: 10.1097/HJH.0b013e32832e8d0f
  23. Ponikowski P., Chua T.P., Piepoli M., Ondusova D., Webb-Peploe K., Harrington D. et al. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation. 1997; 96 (8): 2586–2594. DOI: 10.1161/01.cir.96.8.2586
  24. Ponikowski P., Chua T.P., Anker S.D., Francis D.P., Doehner W., Banasiak W. et al. Peripheral chemorecep-tor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001; 104 (5): 544–549. DOI: 10.1161/hc3101.093699
  25. Chua T.P., Ponikowski P., Webb-Peploe K., Harrington D., Anker S.D., Piepoli M., Coats A.J. Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur. Heart J. 1997; 18 (3): 480–486. DOI: 10.1093/oxfordjournals.eurheartj.a015269
  26. Hennersdorf M.G., Hillebrand S., Perings C., Strauer B.E. Chemoreflexsensitivity in chronic heart failure patients. Eur. J. Heart Fail. 2001; 3 (6): 679–684. DOI: 10.1016/s1388-9842(01)00189-1
  27. Edgell H., McMurtry M.S., Haykowsky M.J., Paterson I., Ezekowitz J.A., Dyck J.R., Stickland M.K. Peripheral chemoreceptor control of cardiovascular function at rest and during exercise in heart failure patients. J. Appl. Physiol. (1985). 2015; 118 (7): 839–848. DOI: 10.1152/japplphysiol.00898.2014
  28. Chua T.P., Coats A.J. The reproducibility and comparability of tests of the peripheral chemoreflex: comparing the transient hypoxic ventilatory drive test and the single-breath carbon dioxide response test in healthy subjects. Eur. J. Clin. Invest. 1995; 25 (12): 887–892. DOI: 10.1111/j.1365-2362.1995.tb01962.x
  29. Ponikowski P., Chua T.P., Piepoli M., Amadi A.A., Harrington D., Webb-Peploe K. et al. Chemoreceptor dependence of very low frequency rhythms in advanced chronic heart failure. Am. J. Physiol. 1997; 272 (1 Pt 2): H438–47. DOI: 10.1152/ajpheart.1997.272.1.H438
  30. McСlean P., Phillipson E., Martinez D., Zamel N. Single breath of CO2 as a clinical test of the peripheral chemoreflex. J. Appl. Physiol. 1988; 64 (1): 84–89. DOI: 10.1152/JAPPL.1988.64.1.84
  31. Mirizzi G., Giannoni A., Ripoli A., Iudice G., Bramanti F., Emdin M., Passino C. Prediction of the chemoreflex gain by common clinical variables in heart failure. PloS One. 2016; 11 (4): e0153510. DOI: 10.1371/journal.pone.0153510
  32. Duffin J. Measuring the respiratory chemoreflexes in humans. Respir. Physiol. Neurobiol. 2011; 177: 71–79. DOI: 10.1016/j.resp.2011.04.009
  33. Boulet L., Jamieson A., Day T.A. The effects of prior hyperventilation duration on central chemoreflex responses using the “Duffin” hyperoxic rebreathing test (1092.16). The FASEB Journal. 2014; 28. DOI: 10.1096/FASEBJ.28.1_SUPPLEMENT.1092.16
  34. Dahan A., Nieuwenhuijs D., Teppema L. Plasticity of central chemoreceptors: effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Med. 2007; 4 (7): e239. DOI: 10.1371/journal.pmed.0040239
  35. Narkiewicz K., Pesek C.A., van de Borne P.J., Kato M., Somers V.K. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation. 1999; 100 (3): 262–267. DOI: 10.1161/01.cir.100.3.262
  36. Sun S.Y., Wang W., Zucker I.H., Schultz H.D. Enhanced peripheral chemoreflex function in conscious rabbits with pacing-induced heart failure. J. Appl. Physiol. (1985). 1999; 86 (4): 1264–1272. DOI: 10.1152/jappl.1999.86.4.1264
  37. Ciarka A., Cuylits N., Vachiery J.L., Lamotte M., Degaute J.P., Naeije R., van de Borne P. Increased peripheral chemoreceptors sensitivity and exercise ventilation in heart transplant recipients. Circulation. 2006; 113 (2): 252–257. DOI: 10.1161/CIRCULATIONAHA.105.560649
  38. Parkes M.J. Breath-holding and its breakpoint. Exp. Physiol. 2006; 91 (1): 1–15. DOI: 10.1113/expphysiol.2005.031625
  39. Zabolotskikh I.B., Bautin A.E., Grigoryev E.V., Gritsan A.I., Lebedinskii K.M., Potievskaya V.I. et al. Perioperative management of patients with hypertension. Guidelines of the All-Russian Public Organization Federation of Anesthesiologists and Reanimatologists. Annals of Critical Care. 2024; 3: 7–26 (in Russ.). DOI: 10.21320/1818-474X-2024-3-7-26
  40. Daly W.J., Bondurant S. Effects of oxygen breathing on the heart rate, blood pressure, and cardiac index of normal men – resting, with reactive hyperemia, and after atropine. J. Clin. Invest. 1962; 41 (1): 126–132. DOI: 10.1172/JCI104454
  41. Ponikowski P., Francis D.P., Piepoli M.F., Davies L.C., Chua T.P., Davos C.H. et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 2001; 103 (7): 967–972. DOI: 10.1161/01.cir.103.7.967
  42. Haque W.A., Boehmer J., Clemson B.S., Leuenberger U.A., Silber D.H., Sinoway L.I. Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J. Am. Coll. Cardiol. 1996; 27 (2): 353–357. DOI: 10.1016/0735-1097(95)00474-2
  43. Bascom D.A., Clement I.D., Dorrington K.L., Robbins P.A. Effects of dopamine and domperidone on ventilation during isocapnic hypoxia in humans. Respir. Physiol. 1991; 85 (3): 319–328. DOI: 10.1016/0034-5687(91)90071-p
  44. van de Borne P., Oren R., Somers V.K. Dopamine depresses minute ventilation in patients with heart failure. Circulation. 1998; 98 (2): 12 6–131. DOI: 10.1161/01.cir.98.2.126
  45. Giannoni A., Emdin M., Bramanti F., Iudice G., Francis D.P., Barsotti A. et al. Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J. Am. Coll. Cardiol. 2009; 53 (21): 1975–1980. DOI: 10.1016/j.jacc.2009.02.030
  46. Niewinski P. Carotid body modulation in systolic heart failure from the clinical perspective. J. Physiol. 2017; 595 (1): 53–61. DOI: 10.1113/JP271692
  47. Basting T.M., Burke P.G., Kanbar R., Viar K.E., Stornetta D.S., Stornetta R.L., Guyenet P.G. Hypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis. J. Neurosci. 2015; 35 (2): 527–543. DOI: 10.1523/JNEUROSCI.2923-14.2015
  48. Floras J.S., Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 2015; 36 (30): 1974–1982. DOI: 10.1093/eurheartj/ehv087
  49. Kious K.W., Philipose A., Smith L.J., Kemble J.P., Twohey S.C.E., Savage K. et al. Peripheral chemoreflex modulation of renal hemodynamics and renal tissue PO2 in chronic heart failure with reduced ejection fraction. Front. Physiol. 2022; 13: 955538. DOI: 10.3389/fphys.2022.955538
  50. Marcus N.J., Pugge C., Mediratta J., Schiller A.M., Del Rio R., Zucker I.H., Schultz H.D. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2015; 309: H259–H266. DOI: 10.1152/ajpheart.00268.2015
  51. Zannad F., Rossignol P. Cardiorenal syndrome revisited. Circulation. 2018; 138 (9): 929–944. DOI: 10.1161/CIRCULATIONAHA.117.028814
  52. Costanzo M.R. The cardiorenal syndrome in heart failure. Cardiol. Clin. 2022; 40 (2): 219–235. DOI: 10.1016/j.ccl.2021.12.010
  53. Li Y.-L., Xia X.-H., Zheng H., Gao L., Li Y.-F., Liu D. et al. Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc. Res. 2006; 71 (1): 129–138. DOI: 10.1016/j.cardiores.2006.03.017
  54. Cundrle I. Jr, Johnson B.D., Rea R.F., Scott C.G., Somers V.K., Olson L.J. Modulation of ventilatory reflex control by cardiac resynchronization therapy. J. Card. Fail. 2015; 21 (5): 367–373. DOI: 10.1016/j.cardfail.2014.12.013
  55. Mezzani A., Pistono M., Agostoni P., Giordano A., Gnemmi M., Imparato A. et al. Exercise gas exchange in continuous-flow left ventricular assist device recipients. PLoS One. 2018; 13 (6): e0187112. DOI: 10.1371/journal.pone.0187112
  56. Apostolo A., Paolillo S., Contini M., Vignati C., Tarzia V., Campodonico J. et al. Comprehensive effects of left ventricular assist device speed changes on alveolar gas exchange, sleep ventilatory pattern, and exercise performance. J. Heart Lung. Transplant. 2018; 37 (11): 1361–1371. DOI: 10.1016/j.healun.2018.07.005
  57. Imadojemu V.A., Mawji Z., Kunselman A., Gray K.S., Hogeman C.S., Leuenberger U.A. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. Chest. 2007; 131 (5): 1406–1413. DOI: 10.1378/chest.06-2580.
  58. Spicuzza L., Bernardi L., Balsamo R., Ciancio N., Polosa R, Di Maria G. Effect of treatment with nasal continuous positive airway pressure on ventilatory response to hypoxia and hypercapnia in patients with sleep apnea syndrome. Chest. 2006; 130: 774–779. DOI: 10.1378/chest.130.3.774
  59. Fontana M., Emdin M., Giannoni A., Iudice G., Baruah R., Passino C. Effect of acetazolamide on chemosensitivity, Cheyne-Stokes respiration, and response to effort in patients with heart failure. Am. J. Cardiol. 2011; 107 (11): 1675–1680. DOI: 10.1016/j.amjcard.2011.01.060
  60. Lorenzi-Filho G., Rankin F., Bies I., Douglas Bradley T. Effects of inhaled carbon dioxide and oxygen on cheyne-stokes respiration in patients with heart failure. Am. J. Respir. Crit. Care Med. 1999; 159 (5 Pt 1): 1490–1498. DOI: 10.1164/ajrccm.159.5.9810040.
  61. Giannoni A., Baruah R., Willson K., Mebrate Y., Mayet J., Emdin M. et al. Real-time dynamic carbon dioxide administration: a novel treatment strategy for stabilization of periodic breathing with potential application to central sleep apnea. J. Am. Coll. Cardiol. 2010; 56 (22): 1832–1837. DOI: 10.1016/j.jacc.2010.05.053
  62. Del Rio R., Marcus N.J., Schultz H.D. Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J. Am. Coll. Cardiol. 2013; 62 (25): 2422–2430. DOI: 10.1016/j.jacc.2013.07.079
  63. Tubek S., Niewinski P., Reczuch K., Janczak D., Rucinski A., Paleczny B. et al. Effects of selective carotid body stimulation with adenosine in conscious humans. J. Physiol. 2016; 594 (21): 6225–6240. DOI: 10.1113/JP272109
  64. Javaheri S., Parker T.J., Wexler L., Liming J.D., Lindower P., Roselle G.A. Effect of Theophylline on sleep-disordered breathing in heart failure. N. Engl. J. Med. 1996; 335 (8): 562–567. DOI: 10.1056/NEJM 199608223350805
  65. Javaheri S., Guerra L. Lung function, hypoxic and hypercapnic ventilatory responses, and respiratory muscle strength in normal subjects taking oral theophylline. Thorax. 1990; 45 (10): 743–747.
  66. Yamauchi M., Dostal J., Kimura H., Strohl K.P. Effects of buspirone on posthypoxic ventilatory behavior in the C57BL/6J and A/J mouse strains. J. Appl. Physiol. 2008; 105 (2): 518–526. DOI: 10.1152/japplphysiol.00069.2008.
  67. Taylor N.C., Li A., Nattie E.E. Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats. J. Physiol. 2005; 566 (Pt 2): 543–557. DOI: 10.1113/jphysiol.2005.083873
  68. Zeitler E.P., Abraham W.T. Novel devices in heart failure: BAT, atrial shunts, and phrenic nerve stimulation. JACC Heart Fail. 2020; 8 (4): 251–264. DOI: 10.1016/j.jchf.2019.11.006
  69. Heusser K., Thöne A., Lipp A., Menne J., Beige J., Reuter H. et al. Efficacy of electrical baroreflex activation is independent of peripheral chemoreceptor modulation. Hypertension. 2020; 75 (1): 257–264. DOI: 10.1161/HYPERTENSIONAHA.119.13925
  70. Victor R.G. Carotid baroreflex activation therapy for resistant hypertension. Nat. Rev. Cardiol. 2015; 12 (8): 451–463. DOI: 10.1038/nrcardio.2015.96
  71. Zile M.R., Lindenfeld J., Weaver F.A., Zannad F., Galle E., Rogers T., Abraham W.T. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 2020; 76. DOI: 10.1016/j.jacc.2020.05.015
  72. Dell’Oro R., Gronda E., Seravalle G., Costantino G., Alberti L., Baronio B. et al. Restoration of normal sympathetic neural function in heart failure following baroreflex activation therapy: final 43-month study report. J. Hypertens. 2017; 35: 2532–2536. DOI: 10.1097/HJH.0000000000001498
  73. Трембач Н.В. Влияние чувствительности периферического хеморефлекса на частоту критических инцидентов в течение сочетанной анестезии. Кубанский научный медицинский вестник. 2018; 25 (3): 113–118. DOI: 10.25207/1608-6228-2018-25-3-113-118
  74. Trembach N.V. The influence of peripheral chemoreflex sensitivity on the critical incidents rate during combined anesthesia. Kuban Scientific Medical Bulletin. 2018; 25 (3): 113–118 (in Russ.). DOI: 10.25207/1608-6228-2018-25-3-113-118
  75. Chislova A.P., Yurlov I.A. Influence of chronic hypoxemia and high concentration of hemoglobin on the development of complications in the early postoperative period in patients with cyanotic congenital heart diseases operated with cardiopulmonary bypass. Clinical Physiology of Circulation. 2017; 14 (4): 220–225 (in Russ.). DOI: 10.24022/1814-6910-2017-14-4-220-225

Об авторах

  • Трембач Никита Владимирович, д-р мед. наук, доцент кафедры анестезиологии, реаниматологии и трансфузиологии; ORCID
  • Трембач Илья Антонович, ассистент кафедры анестезиологии, реаниматологии и трансфузиологии; ORCID
  • Заболотских Игорь Борисович, д-р мед. наук, профессор, заведующий кафедрой анестезиологии, реаниматологии и трансфузиологии; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A