Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Факторы риска развития церебральных нарушений после кардиохирургических вмешательств

Авторы: Лобачева Г.В., Максимова А.Г.

Раздел: Обзоры

Библиографическая ссылка: Клиническая физиология кровообращения. 2024; 21 (4): 300-310

Цитировать как: Лобачева Г.В., Максимова А.Г. . Факторы риска развития церебральных нарушений после кардиохирургических вмешательств. Клиническая физиология кровообращения. 2024; 21 (4): 300-310. DOI:

Скачать (Download)


Литература

  1. Голухова Е.З. Отчет о научной и лечебной работе Национального медицинского исследовательского центра сердечно-сосудистой хирургии им. А.Н. Бакулева Минздрава России за 2023 год и перспективы развития. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2024; 25 (Спецвыпуск): 5–141. DOI: 10.24022/1810-0694-2024-25S
  2. Jonsson K., Barbu M., Nielsen S.J., Hafsteinsdottir B., Gudbjartsson T., Jensen E.M. et al. Perioperative stroke and survival in coronary artery bypass grafting patients: a SWEDEHEART study. Eur. J. Cardiothorac. Surg. 2022; 62 (4): ezac 025. DOI: 10.1093/ejcts/ezac025
  3. Alwaqfi N., Al Barakat M.M., Qariouti H., Ibrahim K., Alzoubi N. Stroke after heart valve surgery: a single center institution report. J. Cardiothorac. Surg. 2024; 19 (1): 518. DOI: 10.1186/s13019-024-03009-x
  4. Cai S., Li J., Gao J., Pan W., Zhang Y. Prediction models for postoperative delirium after cardiac surgery: Systematic review and critical appraisal. Int. J. Nurs. Stud. 2022; 136: 104340. DOI: 10.1016/j.ijnurstu.2022.104340
  5. Hulde N., Zittermann A., Tigges-Limmer K., Koster A., Weinrautner N., Gummert J. et al. Preoperative risk factors and early outcomes of delirium in valvular open-heart surgery. Thorac. Cardiovasc. Surg. 2022; 70 (7): 558–565. DOI: 10.1055/s-0041-1740984
  6. Greaves D., Psaltis P.J., Davis D.H.J., Ross T.J., Ghezzi E.S., Lampit A. et al. Risk factors for delirium and cognitive decline following coronary artery bypass grafting surgery: a systematic review and meta-analysis. J. Am. Heart Assoc. 2020; 9 (22): e017275. DOI: 10.1161/JAHA.120.017275
  7. Florido-Santiago M., Pérez-Belmonte L.M., Osuna-Sánchez J., Barbancho M.A., Ricci M., Millán-Gómez M. et al. Assessment of long-term cognitive dysfunction in older patients who undergo heart surgery. Neurologia (Engl. Ed.). 2023; 38 (6): 399–404. DOI: 10.1016/j.nrleng.2020.12.005
  8. Xu F., Han L., Wang Y., Deng D., Ding Y., Zhao S. et al. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med. 2023; 21 (1): 7. DOI: 10.1186/s12916-022-02705-6
  9. Paunikar S., Chakole V. Postoperative delirium and neurocognitive disorders: a comprehensive review of pathophysiology, risk factors, and management strategies. Cureus. 2024; 16 (9): e68492. DOI: 10.7759/cureus.68492
  10. Овчинников Д.А., Амосов Д.Д., Воробьев Е.А., Гарнюк В.В., Бельтюков П.П., Гребенник В.К. и др. Когнитивная дисфункция и содержание в крови маркеров воспалительного ответа у пациентов, перенесших аортокоронарное шунтирование. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017; 117 (4): 5–10. DOI: 10.17116/jnevro2017117415-10
  11. Kong X., Lyu W., Lin X., Lin C., Feng H., Xu L. et al. Itaconate alleviates anesthesia/surgery-induced cognitive impairment by activating a Nrf2-dependent anti-neuroinflammation and neurogenesis via gut-brain axis. J. Neuroinflammation. 2024; 21 (1): 104. DOI: 10.1186/s12974-024-03103-w
  12. Abrahamov D., Levran O., Naparstek S., Refaeli Y., Kaptson S., Abu Salah M. et al. Blood-brain barrier disruption after cardiopulmonary bypass: diagnosis and correlation to cognition. Ann. Thorac. Surg. 2017; 104 (1): 161–169. DOI: 10.1016/j.athoracsur.2016.10.043
  13. Yang N., Liang Y., Yang P., Wang W., Zhang X., Wang J. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats. Exp. Ther. Med. 2016; 12 (1): 463–468. DOI: 10.3892/etm.2016.3262
  14. Zhang J., Dong Y., Lining Huang, Xu X., Liang F., Soriano S.G. et al. Interaction of Tau, IL-6 and mitochondria on synapse and cognition following sevoflurane anesthesia in young mice. Brain. Behav. Immun. Health. 2020; 8: 100133. DOI: 10.1016/j.bbih.2020.100133
  15. Suntoko B., Hadisaputro S., Kalim H., Hadi S., Saputra W.A. Relationship between disease activity, levels of IFN-a, IL-4, IL-6, and anti- NMDA to cognitive dysfunction (MoCA-INA Score) in systemic lupus erythematosus (SLE) patients with cognitive dysfunction. Acta Med. Indones. 2023; 55 (3): 307–314.
  16. Kinuthia U.M., Wolf A., Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front. Immunol. 2020; 11: 564077. DOI: 10.3389/fimmu.2020.564077
  17. Ren S., Breuillaud L., Yao W., Yin T., Norris K.A., Zehntner S.P. et al. TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer’s disease pathology in young Trem2R47H rats. J. Biol. Chem. 2021; 296: 100089. DOI: 10.1074/jbc.RA120.016395
  18. Barrientos R.M., Hein A.M., Frank M.G., Watkins L.R., Maier S.F. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J. Neurosci. 2012; 32 (42): 14641–14648. DOI: 10.1523/JNEUROSCI.2173-12.2012
  19. Peña-Altamira E., Petralla S., Massenzio F., Virgili M., Bolognesi M.L., Monti B. Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer’s disease. Front. Aging Neurosci. 2017; 9: 175. DOI: 10.3389/fnagi.2017.00175
  20. Qin C., Fan W.H., Liu Q., Shang K., Murugan M., Wu L.J. et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke. 2017; 48 (12): 3336–3346. DOI: 10.1161/STROKEAHA.117.018505
  21. Yu H., Ren K., Jin Y., Zhang L., Liu H., Huang Z. et al. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology. 2025; 264: 110217. DOI: 10.1016/j.neuropharm.2024.110217
  22. Benfante R., Di Lascio S., Cardani S., Fornasari D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin. Exp. Res. 2021; 33 (4): 823–834. DOI: 10.1007/s40520-019-01359-4
  23. Zorbaz T., Madrer N., Soreq H. Cholinergic blockade of neuroinflammation: from tissue to RNA regulators. Neuronal. Signal. 2022; 6 (1): NS20210035. DOI: 10.1042/NS20210035
  24. Маркелова Е.В., Зенина А.А., Кныш С.В., Чагина Е.А., Сукачева С.А., Протопопов А.В. Ранние маркеры послеоперационной когнитивной дисфункции. Кардиология и сердечно-сосудистая хирургия. 2022; 15 (4): 417–423. DOI: 10.17116/kardio202215041417
  25. Bivona G., Iemmolo M., Agnello L., Lo Sasso B., Gambino C.M., Giglio R.V. et al. Microglial activation and priming in Alzheimer’s disease: state of the art and future perspectives. Int. J. Mol. Sci. 2023; 24 (1): 884. DOI: 10.3390/ijms24010884
  26. Peng L., Guo D., Shi Y., Yang J., Wei W. The incidence, risk factors and outcomes of impaired cerebral autoregulation in aortic arch surgery: a single-center, retrospective cohort study. J. Cardiothorac. Surg. 2023; 18 (1): 312. DOI: 10.1186/s13019-023-02413-z
  27. Ferrante M.S., Pisano C., Van Rothem J., Ruvolo G., Abouliatim I. Cerebrovascular events after cardiovascular surgery: diagnosis, management and prevention strategies. Kardiochir. Torakochir. Pol. 2023; 20 (2): 118–122. DOI: 10.5114/kitp.2023.130020
  28. Stöhr E.J., McDonnell B.J., Colombo P.C., Willey J.Z. CrossTalk proposal: Blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. J. Physiol. 2019; 597 (2): 353–356. DOI: 10.1113/JP276729
  29. Korotcova L., Kumar S., Agematsu K., Morton P.D., Jonas R.A., Ishibashi N. Prolonged white matter inflammation after cardiopulmonary bypass and circulatory arrest in a juvenile porcine model. Ann. Thorac. Surg. 2015; 100 (3): 1030–1037. DOI: 10.1016/j.athoracsur.2015.04.017
  30. Dogariu O.A., Dogariu I., Vasile C.M., Berceanu M.C., Raicea V.C., Albu C.V. et al. Diagnosis and treatment of watershed strokes: a narrative review. J. Med. Life. 2023; 16 (6): 842–850. DOI: 10.25122/jml-2023-0127
  31. Wood M.D., Boyd J.G., Wood N., Frank J., Girard T.D., Ross-White A. et al. The use of near-infrared spectroscopy and/or transcranial Doppler as non-invasive markers of cerebral perfusion in adult sepsis patients with delirium: a systematic review. J. Intensive Care Med. 2022; 37 (3): 408–422. DOI: 10.1177/0885066621997090
  32. Heffernan Á.B., Steinruecke M., Dempsey G., Chandran S., Selvaraj B.T., Jiwaji Z. et al. Role of glia in delirium: proposed mechanisms and translational implications. Mol. Psychiatry. 2025; 30 (3): 1138–1147. DOI: 10.1038/s41380-024-02801-4
  33. Erkelens C.D., van der Wal H.H., de Jong B.M., Elting J.W., Renken R., Gerritsen M. et al. Dynamics of cerebral blood flow in patients with mild non-ischaemic heart failure. Eur. J. Heart Fail. 2017; 19 (2): 261–268. DOI: 10.1002/ejhf.660
  34. Лобачева Г.В., Мамалыга М.Л., Шумилина М.В. Влияние сердечно-сосудистых дисфункций на формирование неврологических нарушений. Клиническая физиология кровообращения. 2016; 13 (4): 185–191.
  35. Triposkiadis F., Briasoulis A., Kitai T., Magouliotis D., Athanasiou T., Skoularigis J. et al. The sympathetic nervous system in heart failure revisited. Heart Fail. Rev. 2024; 29 (2): 355–365. DOI: 10.1007/s10741-023-10345-y
  36. Ovsenik A., Podbregar M., Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain. Behav. 2021; 11 (6): e02176. DOI: 10.1002/brb3.2176
  37. Muehlschlegel G., Kubicki R., Jacobs-LeVan J., Kroll J., Klemm R., Humburger F. et al. Neurological impact of slower rewarming during bypass surgery in infants. Thorac. Cardiovasc. Surg. 2024; 72 (S 03): e7–e15. DOI: 10.1055/s-0044-1787650
  38. Ferrari F., Moretti A., Villa R.F. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural. Regen. Res. 2022; 17 (2): 292–299. DOI: 10.4103/1673-5374.317959
  39. Ding P.F., Zhang H.S., Wang J., Gao Y.Y., Mao J.N., Hang C.H. et al. Insulin resistance in ischemic stroke: mechanisms and therapeutic approaches. Front. Endocrinol. (Lausanne). 2022; 13: 1092431. DOI: 10.3389/fendo.2022.1092431
  40. Georgakis M.K., Harshfield E.L., Malik R., Franceschini N., Langenberg C., Wareham N.J. et al. Diabetes mellitus, glycemic traits, and cerebrovascular disease: a mendelian randomization study. Neurology. 2021; 96 (13): e1732–e1742. DOI: 10.1212/WNL.0000000000011555
  41. Yang W.C., Cao H.L., Wang Y.Z., Li T.T., Hu H.Y., Wan Q. et al. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury. Neurol. Regen. Res. 2021; 16 (8): 1574–1581. DOI: 10.4103/1673-5374.303035
  42. Eshaq R.S., Aldalati A.M.Z., Alexander J.S., Harris N.R. Diabetic retinopathy: breaking the barrier. Pathophysiology. 2017; 24 (4): 229–241. DOI: 10.1016/j.pathophys.2017.07.001
  43. Gericke A., Suminska-Jasińska K., Bręborowicz A. Sulodexide reduces glucose induced senescence in human retinal endothelial cells. Sci. Rep. 2021; 11 (1): 11532. DOI: 10.1038/s41598-021-90987-w
  44. Chen Y.L., Rosa R.H. Jr, Kuo L., Hein T.W. Hyperglycemia augments endothelin-1-induced constriction of human retinal venules. Transl. Vis. Sci. Technol. 2020; 9 (9): 1. DOI: 10.1167/tvst.9.9.1
  45. Watt C., Sanchez-Rangel E., Hwang J.J. Glycemic variability and CNS inflammation: reviewing the connection. Nutrients. 2020; 12 (12): 3906. DOI: 10.3390/nu12123906
  46. Guo Y., Dong L., Gong A., Zhang J., Jing L., Ding T. et al. Damage to the blood-brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int. J. Mol. Med. 2021; 48 (1): 142. DOI: 10.3892/ijmm.2021.4975
  47. Salman M., Ismael S., Li L., Ahmed H.A., Puchowicz M.A., Ishrat T. Acute hyperglycemia exacerbates hemorrhagic transformation after embolic stroke and reperfusion with tPA: a possible role of TXNIP-NLRP3 inflammasome. J. Stroke Cerebrovasc. Dis. 2022; 31 (2): 106226. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106226
  48. Lee K.S., Yoon S.H., Hwang I., Ma J.H., Yang E., Kim R.H. et al. Hyperglycemia enhances brain susceptibility to lipopolysaccharide- induced neuroinflammation via astrocyte reprogramming. J. Neuroinflammation. 2024; 21 (1): 137. DOI: 10.1186/s12974-024-03136-1
  49. Kobayashi M., Narumi K., Furugen A., Iseki K. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol. Ther. 2021; 226: 107862. DOI: 10.1016/j.pharmthera.2021.107862
  50. Liu Y., Yang S., Cai E., Lin L., Zeng P., Nie B. et al. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/ MRS and in vitro approaches. CNS Neurosci. Ther. 2020; 26 (10): 1031–1044. DOI: 10.1111/cns.13399
  51. Baranovicova E., Kalenska D., Kaplan P., Kovalska M., Tatarkova Z., Lehotsky J. Blood and brain metabolites after cerebral ischemia. Int. J. Mol. Sci. 2023; 24 (24): 17302. DOI: 10.3390/ijms242417302
  52. Tholance Y., Aboudhiaf S., Balança B., Barcelos G.K., Grousson S., Carrillon R. et al. Early brain metabolic disturbances associated with delayed cerebral ischemia in patients with severe subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2023; 43 (11): 1967–1982. DOI: 10.1177/0271678X231193661
  53. Xiong X.Y., Pan X.R., Luo X.X., Wang Y.F., Zhang X.X., Yang S.H. et al. Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation. Theranostics. 2024; 14 (11): 4297–4317. DOI: 10.7150/thno.96375
  54. An H., Zhou B., Ji X. Mitochondrial quality control in acute ischemic stroke. J. Cereb. Blood Flow Metab. 2021; 41 (12): 3157–3170. DOI: 10.1177/0271678X211046992
  55. Shen Z., Xiang M., Chen C., Ding F., Wang Y., Shang C. et al. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed. Pharmacother. 2022; 151: 113125. DOI: 10.1016/j.biopha.2022.113125
  56. Kealy J., Murray C., Griffin E.W., Lopez-Rodriguez A.B., Healy D., Tortorelli L.S. et al. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. J. Neurosci. 2020; 40 (29): 5681–5696. DOI: 10.1523/JNEUROSCI.2876-19.2020
  57. Morland C., Pettersen M.N., Hassel B. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium. Neurotoxicology. 2016; 54: 34–43. DOI: 10.1016/j.neuro.2016.03.005
  58. Pross N. Effects of dehydration on brain functioning: a life-span perspective. Ann. Nutr. Metab. 2017; 70 (Suppl. 1): 30–36. DOI: 10.1159/000463060
  59. Pigarova E.A., Dzeranova L.K. Metabolic mechanisms of development and compensation of osmotic stress in the brain. Obesity Metabolism. 2017; 14 (4): 73–76. DOI: 10.14341/omet2017473-76
  60. Lin R., Du N., Feng J., Li J., Li X., Cui Y. et al. Postoperative hypernatremia is associated with worse brain injuries on EEG and MRI following pediatric cardiac surgery. Front. Cardiovasc. Med. 2023; 10: 1320231. DOI: 10.3389/fcvm.2023.1320231
****
  1. Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue) (in Russ.). DOI: 10.24022/1810-0694-2024-25S
  2. Jonsson K., Barbu M., Nielsen S.J., Hafsteinsdottir B., Gudbjartsson T., Jensen E.M. et al. Perioperative stroke and survival in coronary artery bypass grafting patients: a SWEDEHEART study. Eur. J. Cardiothorac. Surg. 2022; 62 (4): ezac 025. DOI: 10.1093/ejcts/ezac025
  3. Alwaqfi N., Al Barakat M.M., Qariouti H., Ibrahim K., Alzoubi N. Stroke after heart valve surgery: a single center institution report. J. Cardiothorac. Surg. 2024; 19 (1): 518. DOI: 10.1186/s13019-024-03009-x
  4. Cai S., Li J., Gao J., Pan W., Zhang Y. Prediction models for postoperative delirium after cardiac surgery: Systematic review and critical appraisal. Int. J. Nurs. Stud. 2022; 136: 104340. DOI: 10.1016/j.ijnurstu.2022.104340
  5. Hulde N., Zittermann A., Tigges-Limmer K., Koster A., Weinrautner N., Gummert J. et al. Preoperative risk factors and early outcomes of delirium in valvular open-heart surgery. Thorac. Cardiovasc. Surg. 2022; 70 (7): 558–565. DOI: 10.1055/s-0041-1740984
  6. Greaves D., Psaltis P.J., Davis D.H.J., Ross T.J., Ghezzi E.S., Lampit A. et al. Risk factors for delirium and cognitive decline following coronary artery bypass grafting surgery: a systematic review and meta-analysis. J. Am. Heart Assoc. 2020; 9 (22): e017275. DOI: 10.1161/JAHA.120.017275
  7. Florido-Santiago M., Pérez-Belmonte L.M., Osuna-Sánchez J., Barbancho M.A., Ricci M., Millán-Gómez M. et al. Assessment of long-term cognitive dysfunction in older patients who undergo heart surgery. Neurologia (Engl. Ed.). 2023; 38 (6): 399–404. DOI: 10.1016/j.nrleng.2020.12.005
  8. Xu F., Han L., Wang Y., Deng D., Ding Y., Zhao S. et al. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med. 2023; 21 (1): 7. DOI: 10.1186/s12916-022-02705-6
  9. Paunikar S., Chakole V. Postoperative delirium and neurocognitive disorders: a comprehensive review of pathophysiology, risk factors, and management strategies. Cureus. 2024; 16 (9): e68492. DOI: 10.7759/cureus.68492
  10. Ovchinnikov D.A., Amosov D.D., Vorobyov E.A., Garnyuk V.V., Beltyukov P.P., Grebennik V.K. et al. Cognitive dysfunction and content of inflammatory markers in patients after coronary artery bypass graft. S.S. Korsakov Journal of Neurology and Psychiatry. 2017; 117 (4): 5–10 (in Russ.). DOI: 10.17116/jnevro2017117415-10
  11. Kong X., Lyu W., Lin X., Lin C., Feng H., Xu L. et al. Itaconate alleviates anesthesia/surgery-induced cognitive impairment by activating a Nrf2-dependent anti-neuroinflammation and neurogenesis via gut-brain axis. J. Neuroinflammation. 2024; 21 (1): 104. DOI: 10.1186/s12974-024-03103-w
  12. Abrahamov D., Levran O., Naparstek S., Refaeli Y., Kaptson S., Abu Salah M. et al. Blood-brain barrier disruption after cardiopulmonary bypass: diagnosis and correlation to cognition. Ann. Thorac. Surg. 2017; 104 (1): 161–169. DOI: 10.1016/j.athoracsur.2016.10.043
  13. Yang N., Liang Y., Yang P., Wang W., Zhang X., Wang J. TNF-α receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats. Exp. Ther. Med. 2016; 12 (1): 463–468. DOI: 10.3892/etm.2016.3262
  14. Zhang J., Dong Y., Lining Huang, Xu X., Liang F., Soriano S.G. et al. Interaction of Tau, IL-6 and mitochondria on synapse and cognition following sevoflurane anesthesia in young mice. Brain. Behav. Immun. Health. 2020; 8: 100133. DOI: 10.1016/j.bbih.2020.100133
  15. Suntoko B., Hadisaputro S., Kalim H., Hadi S., Saputra W.A. Relationship between disease activity, levels of IFN-a, IL-4, IL-6, and anti- NMDA to cognitive dysfunction (MoCA-INA Score) in systemic lupus erythematosus (SLE) patients with cognitive dysfunction. Acta Med. Indones. 2023; 55 (3): 307–314.
  16. Kinuthia U.M., Wolf A., Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front. Immunol. 2020; 11: 564077. DOI: 10.3389/fimmu.2020.564077
  17. Ren S., Breuillaud L., Yao W., Yin T., Norris K.A., Zehntner S.P. et al. TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer’s disease pathology in young Trem2R47H rats. J. Biol. Chem. 2021; 296: 100089. DOI: 10.1074/jbc.RA120.016395
  18. Barrientos R.M., Hein A.M., Frank M.G., Watkins L.R., Maier S.F. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J. Neurosci. 2012; 32 (42): 14641–14648. DOI: 10.1523/JNEUROSCI.2173-12.2012
  19. Peña-Altamira E., Petralla S., Massenzio F., Virgili M., Bolognesi M.L., Monti B. Nutritional and pharmacological strategies to regulate microglial polarization in cognitive aging and Alzheimer’s disease. Front. Aging Neurosci. 2017; 9: 175. DOI: 10.3389/fnagi.2017.00175
  20. Qin C., Fan W.H., Liu Q., Shang K., Murugan M., Wu L.J. et al. Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke. 2017; 48 (12): 3336–3346. DOI: 10.1161/STROKEAHA.117.018505
  21. Yu H., Ren K., Jin Y., Zhang L., Liu H., Huang Z. et al. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology. 2025; 264: 110217. DOI: 10.1016/j.neuropharm.2024.110217
  22. Benfante R., Di Lascio S., Cardani S., Fornasari D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clin. Exp. Res. 2021; 33 (4): 823–834. DOI: 10.1007/s40520-019-01359-4
  23. Zorbaz T., Madrer N., Soreq H. Cholinergic blockade of neuroinflammation: from tissue to RNA regulators. Neuronal. Signal. 2022; 6 (1): NS20210035. DOI: 10.1042/NS20210035
  24. Markelova E.V., Zenina A.A., Knysh S.V., Chagina E.A., Sukacheva S.A., Protopopov A.V. Early markers of postoperative cognitive dysfunction. Russian Journal of Cardiology and Cardiovascular Surgery. 2022; 15 (4): 417–423 (in Russ.). DOI: 10.17116/kardio202215041417
  25. Bivona G., Iemmolo M., Agnello L., Lo Sasso B., Gambino C.M., Giglio R.V. et al. Microglial activation and priming in Alzheimer’s disease: state of the art and future perspectives. Int. J. Mol. Sci. 2023; 24 (1): 884. DOI: 10.3390/ijms24010884
  26. Peng L., Guo D., Shi Y., Yang J., Wei W. The incidence, risk factors and outcomes of impaired cerebral autoregulation in aortic arch surgery: a single-center, retrospective cohort study. J. Cardiothorac. Surg. 2023; 18 (1): 312. DOI: 10.1186/s13019-023-02413-z
  27. Ferrante M.S., Pisano C., Van Rothem J., Ruvolo G., Abouliatim I. Cerebrovascular events after cardiovascular surgery: diagnosis, management and prevention strategies. Kardiochir. Torakochir. Pol. 2023; 20 (2): 118–122. DOI: 10.5114/kitp.2023.130020
  28. Stöhr E.J., McDonnell B.J., Colombo P.C., Willey J.Z. CrossTalk proposal: Blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. J. Physiol. 2019; 597 (2): 353–356. DOI: 10.1113/JP276729
  29. Korotcova L., Kumar S., Agematsu K., Morton P.D., Jonas R.A., Ishibashi N. Prolonged white matter inflammation after cardiopulmonary bypass and circulatory arrest in a juvenile porcine model. Ann. Thorac. Surg. 2015; 100 (3): 1030–1037. DOI: 10.1016/j.athoracsur.2015.04.017
  30. Dogariu O.A., Dogariu I., Vasile C.M., Berceanu M.C., Raicea V.C., Albu C.V. et al. Diagnosis and treatment of watershed strokes: a narrative review. J. Med. Life. 2023; 16 (6): 842–850. DOI: 10.25122/jml-2023-0127
  31. Wood M.D., Boyd J.G., Wood N., Frank J., Girard T.D., Ross-White A. et al. The use of near-infrared spectroscopy and/or transcranial Doppler as non-invasive markers of cerebral perfusion in adult sepsis patients with delirium: a systematic review. J. Intensive Care Med. 2022; 37 (3): 408–422. DOI: 10.1177/0885066621997090
  32. Heffernan Á.B., Steinruecke M., Dempsey G., Chandran S., Selvaraj B.T., Jiwaji Z. et al. Role of glia in delirium: proposed mechanisms and translational implications. Mol. Psychiatry. 2025; 30 (3): 1138–1147. DOI: 10.1038/s41380-024-02801-4
  33. Erkelens C.D., van der Wal H.H., de Jong B.M., Elting J.W., Renken R., Gerritsen M. et al. Dynamics of cerebral blood flow in patients with mild non-ischaemic heart failure. Eur. J. Heart Fail. 2017; 19 (2): 261–268. DOI: 10.1002/ejhf.660
  34. Lobacheva G.V., Mamalyga M.L., Shumilina M.V. The influence of cardiovascular dysfunctions on the formation of neurological disorders. Clinical Physiology of Circulation. 2016; 13 (4): 185–191 (in Russ.).
  35. Triposkiadis F., Briasoulis A., Kitai T., Magouliotis D., Athanasiou T., Skoularigis J. et al. The sympathetic nervous system in heart failure revisited. Heart Fail. Rev. 2024; 29 (2): 355–365. DOI: 10.1007/s10741-023-10345-y
  36. Ovsenik A., Podbregar M., Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain. Behav. 2021; 11 (6): e02176. DOI: 10.1002/brb3.2176
  37. Muehlschlegel G., Kubicki R., Jacobs-LeVan J., Kroll J, Klemm R., Humburger F. et al. Neurological impact of slower rewarming during bypass surgery in infants. Thorac. Cardiovasc. Surg. 2024; 72 (S 03): e7–e15. DOI: 10.1055/s-0044-1787650
  38. Ferrari F., Moretti A., Villa R.F. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural. Regen. Res. 2022; 17 (2): 292–299. DOI: 10.4103/1673-5374.317959
  39. Ding P.F., Zhang H.S., Wang J., Gao Y.Y., Mao J.N., Hang C.H. et al. Insulin resistance in ischemic stroke: mechanisms and therapeutic approaches. Front. Endocrinol. (Lausanne). 2022; 13: 1092431. DOI: 10.3389/fendo.2022.1092431
  40. Georgakis M.K., Harshfield E.L., Malik R., Franceschini N., Langenberg C., Wareham N.J. et al. Diabetes mellitus, glycemic traits, and cerebrovascular disease: a mendelian randomization study. Neurology. 2021; 96 (13): e1732–e1742. DOI: 10.1212/WNL.0000000000011555
  41. Yang W.C., Cao H.L., Wang Y.Z., Li T.T., Hu H.Y., Wan Q. et al. Inhibition of nitric oxide synthase aggravates brain injury in diabetic rats with traumatic brain injury. Neurol. Regen. Res. 2021; 16 (8): 1574–1581. DOI: 10.4103/1673-5374.303035
  42. Eshaq R.S., Aldalati A.M.Z., Alexander J.S., Harris N.R. Diabetic retinopathy: breaking the barrier. Pathophysiology. 2017; 24 (4): 229–241. DOI: 10.1016/j.pathophys.2017.07.001
  43. Gericke A., Suminska-Jasińska K., Bręborowicz A. Sulodexide reduces glucose induced senescence in human retinal endothelial cells. Sci. Rep. 2021; 11 (1): 11532. DOI: 10.1038/s41598-021-90987-w
  44. Chen Y.L., Rosa R.H. Jr, Kuo L., Hein T.W. Hyperglycemia augments endothelin-1-induced constriction of human retinal venules. Transl. Vis. Sci. Technol. 2020; 9 (9): 1. DOI: 10.1167/tvst.9.9.1
  45. Watt C., Sanchez-Rangel E., Hwang J.J. Glycemic variability and CNS inflammation: reviewing the connection. Nutrients. 2020; 12 (12): 3906. DOI: 10.3390/nu12123906
  46. Guo Y., Dong L., Gong A., Zhang J., Jing L., Ding T. et al. Damage to the blood-brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int. J. Mol. Med. 2021; 48 (1): 142. DOI: 10.3892/ijmm.2021.4975
  47. Salman M., Ismael S., Li L., Ahmed H.A., Puchowicz M.A., Ishrat T. Acute hyperglycemia exacerbates hemorrhagic transformation after embolic stroke and reperfusion with tPA: a possible role of TXNIP-NLRP3 inflammasome. J. Stroke Cerebrovasc. Dis. 2022; 31 (2): 106226. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106226
  48. Lee K.S., Yoon S.H., Hwang I., Ma J.H., Yang E., Kim R.H. et al. Hyperglycemia enhances brain susceptibility to lipopolysaccharide- induced neuroinflammation via astrocyte reprogramming. J. Neuroinflammation. 2024; 21 (1): 137. DOI: 10.1186/s12974-024-03136-1
  49. Kobayashi M., Narumi K., Furugen A., Iseki K. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol. Ther. 2021; 226: 107862. DOI: 10.1016/j.pharmthera.2021.107862
  50. Liu Y., Yang S., Cai E., Lin L., Zeng P., Nie B. et al. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/ MRS and in vitro approaches. CNS Neurosci. Ther. 2020; 26 (10): 1031–1044. DOI: 10.1111/cns.13399
  51. Baranovicova E., Kalenska D., Kaplan P., Kovalska M., Tatarkova Z., Lehotsky J. Blood and brain metabolites after cerebral ischemia. Int. J. Mol. Sci. 2023; 24 (24): 17302. DOI: 10.3390/ijms242417302
  52. Tholance Y., Aboudhiaf S., Balança B., Barcelos G.K., Grousson S., Carrillon R. et al. Early brain metabolic disturbances associated with delayed cerebral ischemia in patients with severe subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 2023; 43 (11): 1967–1982. DOI: 10.1177/0271678X231193661
  53. Xiong X.Y., Pan X.R., Luo X.X., Wang Y.F., Zhang X.X., Yang S.H. et al. Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation. Theranostics. 2024; 14 (11): 4297–4317. DOI: 10.7150/thno.96375
  54. An H., Zhou B., Ji X. Mitochondrial quality control in acute ischemic stroke. J. Cereb. Blood Flow Metab. 2021; 41 (12): 3157–3170. DOI: 10.1177/0271678X211046992
  55. Shen Z., Xiang M., Chen C., Ding F., Wang Y., Shang C. et al. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed. Pharmacother. 2022; 151: 113125. DOI: 10.1016/j.biopha.2022.113125
  56. Kealy J., Murray C., Griffin E.W., Lopez-Rodriguez A.B., Healy D., Tortorelli L.S. et al. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. J. Neurosci. 2020; 40 (29): 5681–5696. DOI: 10.1523/JNEUROSCI.2876-19.2020
  57. Morland C., Pettersen M.N., Hassel B. Hyperosmolar sodium chloride is toxic to cultured neurons and causes reduction of glucose metabolism and ATP levels, an increase in glutamate uptake, and a reduction in cytosolic calcium. Neurotoxicology. 2016; 54: 34–43. DOI: 10.1016/j.neuro.2016.03.005
  58. Pross N. Effects of dehydration on brain functioning: a life-span perspective. Ann. Nutr. Metab. 2017; 70 (Suppl. 1): 30–36. DOI: 10.1159/000463060
  59. Pigarova E.A., Dzeranova L.K. Metabolic mechanisms of development and compensation of osmotic stress in the brain. Obesity Metabolism. 2017; 14 (4): 73–76. DOI: 10.14341/omet2017473-76
  60. Lin R., Du N., Feng J., Li J., Li X., Cui Y. et al. Postoperative hypernatremia is associated with worse brain injuries on EEG and MRI following pediatric cardiac surgery. Front. Cardiovasc. Med. 2023; 10: 1320231. DOI: 10.3389/fcvm.2023.1320231

 Если вы заметили опечатку, выделите текст и нажмите Alt+A