Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Тяжесть течения инсульта после перенесенной инфекции COVID-19 у вакцинированных и невакцинированных больных

Авторы: Салихова С.И.1, Леонтьева М.С.1, Бернс С.А.2, Папоян С.А.1 3 4 5, Тавлуева Е.В.1 2

Организация:
1 ГБУЗ «Городская клиническая больница им. Ф.И. Иноземцева Департамента здравоохранения города Москвы», Москва, Российская Федерация
2 ФГБУ «Национальный медицинский исследовательский центр терапии и профилактической медицины» Минздрава России, Москва, Российская Федерация
3 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Российская Федерация
4 ГБУ города Москвы «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения города Москвы», Москва, Российская Федерация
5 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Клиническая физиология регионарного кровообращения

DOI: https://doi.org/10.24022/1814-6910-2024-21-4-344-353

УДК: 616.831:578.834.11

Библиографическая ссылка: Клиническая физиология кровообращения. 2024; 21 (4): 344-353

Цитировать как: Салихова С.И., Леонтьева М.С., Бернс С.А., Папоян С.А. , Тавлуева Е.В. . Тяжесть течения инсульта после перенесенной инфекции COVID-19 у вакцинированных и невакцинированных больных. Клиническая физиология кровообращения. 2024; 21 (4): 344-353. DOI: 10.24022/1814-6910-2024-21-4-344-353

Ключевые слова: COVID-19, SARS-CoV-2, инсульт, вакцинация

Поступила / Принята к печати:  30.10.2024 / 20.12.2024

Скачать (Download)


Аннотация

Цель исследования – оценить тяжесть течения инсульта, развившегося после перенесенной инфекции COVID-19 у вакцинированных и невакцинированных больных, в сравнении с течением инсульта у пациентов, которые не переносили коронавирусную инфекцию.

Материал и методы. В исследование включены 300 пациентов с ишемическим и геморрагическим инсультом, которые поступили в отделение неврологии ГКБ им. Ф.И. Иноземцева в период с января 2021 г. по август 2023 г. Пациенты разделены на три группы: 1-я группа – 100 пациентов с перенесенной коронавирусной инфекцией в анамнезе и впоследствии вакцинированных против вируса SARS-CoV-2; 2-я группа – 100 невакцинированных пациентов с перенесенной инфекцией COVID-19 в анамнезе; 3-я группа – 100 пациентов без факта заболевания коронавирусной инфекцией в анамнезе. Всем пациентам при госпитализации исключали наличие острой коронавирусной инфекции методом РНК с применением амплификации нуклеиновых кислот. Диагноз инсульта подтверждали методом компьютерной томографии, проведенной в 1-е сутки госпитализации и через 24 ч.

Результаты. Наибольшее количество летальных исходов было зарегистрировано в группе пациентов, которые перенесли инфекцию COVID-19 и не были вакцинированы. Во 2-й группе умерли 17 (17%) пациентов, в 1-й группе – 9 (9%) вакцинированных пациентов. В группе больных, у которых в анамнезе отсутствовал факт перенесенной инфекции COVID-19, в период госпитализации летальных исходов не зарегистрировано.

Статистически значимые различия по летальным исходам выявлены при сравнении результатов у пациентов с перенесенной коронавирусной инфекцией в анамнезе и без нее.

Заключение. От инсульта на фоне коронавирусной инфекции пациенты умирали чаще, статистически значимо по сравнению с инсультом без коронавирусной инфекции (р < 0,0001). Несмотря на наибольшую распространенность сердечно-сосудистых факторов риска в группе пациентов с перенесенной инфекцией COVID-19 в анамнезе и вакцинированных, в этой группе летальных исходов от инсульта было зарегистрировано меньше по сравнению с группой невакцинированных от COVID-19 пациентов, но статистически незначимо (p = 0,093).

Литература

  1. Панель мониторинга ВОЗ по коронавирусу (COVID-19). Панель мониторинга ВОЗ по коронавирусу (COVID-19) с данными о вакцинации1. https://covid19.who.int/ (дата обращения 20.08.2024).
  2. Nogueira R.G., Qureshi M.M., Abdalkader M., Martins S.O., Yamagami H., Qiu Z. et al.; SVIN COVID-19 Global Stroke Registry; SVIN COVID-19 Global Stroke Registry. Global impact of COVID-19 on stroke care and IV thrombolysis. Neurology. 2021; 96 (23): e2824–e2838. DOI: 10.1212/WNL.0000000000011885
  3. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194: 145–158. DOI: 10.1016/j.virusres.2014.09.011
  4. Nannoni S., de Groot R., Bell S., Markus H.S. Stroke in COVID-19: a systematic review and meta-analysis. Int. J. Stroke. 2021; 16(2): 137–149. DOI: 10.1177/1747493020972922
  5. Spence J.D., de Freitas G.R., Pettigrew L.C., Ay H., Liebeskind D.S., Kase C.S. et al. Mechanisms of stroke in COVID-19. Cerebrovasc. Dis. 2020; 49 (4): 451–458. DOI: 10.1159/00050958
  6. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P. et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N. Engl. J. Med. 2020; 382 (20): e60. DOI: 10.1056/NEJMc2009787
  7. Heneka M.T., Golenbock D.T., Latz E. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alz. Res. Therapy. 2020; 12 (1): 69. DOI: 10.1186/s13195-020-00640-3
  8. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 2021; 11 (1): 16144. DOI: 10.1038/s41598-021-95565-8
  9. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21 (3): 133–146. DOI: 10.1038/s41579-022-00846-2
  10. Womack J.A., Chang C.C., So‐Armah K.A., Alcorn C., Baker J.V., Brown S.T. et al. HIV infection and cardiovascular disease in women. J. Am. Heart Assoc. 2014; 3 (5): e001035. DOI: 10.1161/JAHA.114.001035
  11. Oikonomou E., Souvaliotis N., Lampsas S., Siasos G., Poulakou G., Theofilis P. et al. Endothelial dysfunction in acute and long standing COVID−19: a prospective cohort study. Vascul. Pharmacol. 2022; 144: 106975. DOI: 10.1016/j.vph.2022.106975
  12. Joshee S., Vatti N., Chang C. Long-term effects of COVID-19. Mayo Clin. Proc. 2022; 97 (3): 579–599. DOI: 10.1016/j. mayocp.2021.12.017
  13. Klein J., Wood J., Jaycox J.R., Dhodapkar R.M., Lu P., Gehlhausen J.R. et al. Distinguishing features of Long COVID identified through immune profiling. Nature. 2023; 623: 139–148. DOI: 10.1038/s41586-023-06651-y
  14. Zuin M., Mazzitelli M., Rigatelli G., Bilato C., Cattelan A. M. Risk of ischemic stroke in patients recovered from COVID-19 infection: a systematic review and meta-analysis. Eur. Stroke J. 2023; 8 (4): 915–922. DOI: 10.1177/23969873231190432
  15. Lim J.T., Liang En.W., Tay A.T., Pang D., Chiew C.J., Ong B., Tan K.B. Long-term cardiovascular, cerebrovascular, and other thrombotic complications in COVID-19 survivors: a retrospective cohort study. Clinical Infectious Diseases. 2024; 78 (1): 70–79. DOI: 10.1093/cid/ciad469
  16. Subramanian A., Nirantharakumar K., Hughes S., Myles P., WilliamsT., Gokhale K.M. et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022; 28 (8): 1706–1714. DOI: 10.1038/s41591-022-01909-w
  17. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022; 28 (3): 583–590. DOI: 10.1038/ s41591-022-01689-3
  18. Atchison C.J., Davies B., Cooper E., Lound A., Whitaker M., Hampshire A. et al. Long-term health impacts of COVID-19 among 242,712 adults in England. Nat. Commun. 2023; 14 (1): 6588. DOI: 10.1038/s41467-023-41879-2
  19. Hamdh B.A., Nazzal Z. A prospective cohort study assessing the relationship between long-COVID symptom incidence in COVID-19 patients and COVID-19 vaccination. Sci Rep. 2023; 13: 4896. DOI: 10.1038/s41598-023-30583-2
  20. Wu W., Zheng X., Ding H., Miao T., Zang Y., Shen S., Gao Y. Association between combination COVID-19-influenza vaccination and long COVID in middle-aged and older Europeans: a cross-sectional study. Hum. Vaccin. Immunother. 2024; 20 (1): 2345505. DOI: 10.1080/21645515.2024.2345505
  21. Alammar M.A. Ischemic stroke after AstraZeneca (COVID-19) vaccination. Saudi Med. J. 2021; 42 (10): 1136–1139. DOI: 10.15537/ smj.2021.42.10.20210326
****
  1. WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19) Dashboard with Vaccination Data1. Available at: https:// covid19.who.int/ (accessed August 20, 2024).
  2. Nogueira R.G., Qureshi M.M., Abdalkader M., Martins S.O., Yamagami H., Qiu Z. et al.; SVIN COVID-19 Global Stroke Registry; SVIN COVID-19 Global Stroke Registry. Global impact of COVID-19 on stroke care and IV thrombolysis. Neurology. 2021; 96 (23): e2824–e2838. DOI: 10.1212/WNL.0000000000011885
  3. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194: 145–158. DOI: 10.1016/j.virusres.2014.09.011
  4. Nannoni S., de Groot R., Bell S., Markus H.S. Stroke in COVID-19: a systematic review and meta-analysis. Int. J. Stroke. 2021; 16(2): 137–149. DOI: 10.1177/1747493020972922
  5. Spence J.D., de Freitas G.R., Pettigrew L.C., Ay H., Liebeskind D.S., Kase C.S. et al. Mechanisms of stroke in COVID-19. Cerebrovasc. Dis. 2020; 49 (4): 451–458. DOI: 10.1159/00050958
  6. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P. et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N. Engl. J. Med. 2020; 382 (20): e60. DOI: 10.1056/NEJMc2009787
  7. Heneka M.T., Golenbock D.T., Latz E. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alz. Res. Therapy. 2020; 12 (1): 69. DOI: 10.1186/s13195-020-00640-3
  8. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 2021; 11 (1): 16144. DOI: 10.1038/s41598-021-95565-8
  9. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21 (3): 133–146. DOI: 10.1038/s41579-022-00846-2
  10. Womack J.A., Chang C.C., So‐Armah K.A., Alcorn C., Baker J.V., Brown S.T. et al. HIV infection and cardiovascular disease in women. J. Am. Heart Assoc. 2014; 3 (5): e001035. DOI: 10.1161/JAHA.114.001035
  11. Oikonomou E., Souvaliotis N., Lampsas S., Siasos G., Poulakou G., Theofilis P. et al. Endothelial dysfunction in acute and long standing COVID−19: a prospective cohort study. Vascul. Pharmacol. 2022; 144: 106975. DOI: 10.1016/j.vph.2022.106975
  12. Joshee S., Vatti N., Chang C. Long-term effects of COVID-19. Mayo Clin. Proc. 2022; 97 (3): 579–599. DOI: 10.1016/j. mayocp.2021.12.017
  13. Klein J., Wood J., Jaycox J.R., Dhodapkar R.M., Lu P., Gehlhausen J.R. et al. Distinguishing features of Long COVID identified through immune profiling. Nature. 2023; 623: 139–148. DOI: 10.1038/s41586-023-06651-y
  14. Zuin M., Mazzitelli M., Rigatelli G., Bilato C., Cattelan A. M. Risk of ischemic stroke in patients recovered from COVID-19 infection: a systematic review and meta-analysis. Eur. Stroke J. 2023; 8 (4): 915–922. DOI: 10.1177/23969873231190432
  15. Lim J.T., Liang En.W., Tay A.T., Pang D., Chiew C.J., Ong B., Tan K.B. Long-term cardiovascular, cerebrovascular, and other thrombotic complications in COVID-19 survivors: a retrospective cohort study. Clinical Infectious Diseases. 2024; 78 (1): 70–79. DOI: 10.1093/cid/ciad469
  16. Subramanian A., Nirantharakumar K., Hughes S., Myles P., WilliamsT., Gokhale K.M. et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022; 28 (8): 1706–1714. DOI: 10.1038/s41591-022-01909-w
  17. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022; 28 (3): 583–590. DOI: 10.1038/ s41591-022-01689-3
  18. Atchison C.J., Davies B., Cooper E., Lound A., Whitaker M., Hampshire A. et al. Long-term health impacts of COVID-19 among 242,712 adults in England. Nat. Commun. 2023; 14 (1): 6588. DOI: 10.1038/s41467-023-41879-2
  19. Hamdh B.A., Nazzal Z. A prospective cohort study assessing the relationship between long-COVID symptom incidence in COVID-19 patients and COVID-19 vaccination. Sci Rep. 2023; 13: 4896. DOI: 10.1038/s41598-023-30583-2
  20. Wu W., Zheng X., Ding H., Miao T., Zang Y., Shen S., Gao Y. Association between combination COVID-19-influenza vaccination and long COVID in middle-aged and older Europeans: a cross-sectional study. Hum. Vaccin. Immunother. 2024; 20 (1): 2345505. DOI: 10.1080/21645515.2024.2345505
  21. Alammar M.A. Ischemic stroke after AstraZeneca (COVID-19) vaccination. Saudi Med. J. 2021; 42 (10): 1136–1139. DOI: 10.15537/ smj.2021.42.10.20210326

Об авторах

  • Салихова Соро Ибрагимовна, врач-кардиолог; ORCID
  • Леонтьева Мария Станиславовна, врач-терапевт; ORCID
  • Бернс Светлана Александровна, д-р мед. наук, профессор кафедры терапии и общей врачебной практики, руководитель отдела изучения патогенетических аспектов старения; ORCID
  • Папоян Симон Ашотович, д-р мед. наук, профессор, заведующий отделением сосудистой хирургии, заведующий организационно-методическим отделом по сердечно-сосудистой хирургии Департамента здравоохранения города Москвы; ORCID
  • Тавлуева Евгения Валерьевна, д-р мед. наук, руководитель регионального сосудистого центра, профессор кафедры терапии и общей врачебной практики с курсом гастроэнтерологии, вед. науч. сотр.; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A