Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Severity of stroke after COVID-19 infection in vaccinated and unvaccinated patients

Authors: Salikhova S.I.1, Leonteva M.S.1, Berns S.A.2, Papoyan S.A.1 3 4 5, Tavlueva E.V.1 2

Company:
1 Inozemtsev City Clinical Hospital of Moscow City Health Department, Moscow, Russian Federation
2 National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russian Federation
3 Research Institute of the Healthcare Organization and Medical Management of Moscow City Health Department, Moscow, Russian Federation
4Pirogov Russian National Research Medical University, Moscow, Russian Federation
5 Russian Medical Academy of Continuing Professional Education, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2024-21-4-344-353

UDC: 616.831:578.834.11

Link: Clinical Physiology of Blood Circulaiton. 2024; 21 (4): 344-353

Quote as: Салихова С.И., Леонтьева М.С., Бернс С.А., Папоян С.А., Тавлуева Е.В. Тяжесть течения инсульта после перенесенной инфекции COVID-19 у вакцинированных и невакцинированных больных. Клиническая физиология кровообращения. 2024; 21 (4): 344–353. DOI: 10.24022/1814-6910-2024-21-4-344-353

Received / Accepted:  30.10.2024 / 20.12.2024

Download
Full text:  

Abstract

Objective. To evaluate the severity of stroke after a COVID-19 infection in vaccinated and unvaccinated patients against the SARS-CoV-2 virus compared to the course of stroke in patients who didn’t have coronavirus infection in a history. 

Material and methods. The study included 300 patients with ischemic and hemorrhagic stroke which are divided into three groups. The first group included 100 patients with history of coronavirus infection and vaccinated against the SARS-CoV-2 virus. The second group included 100 patients with a history of COVID-19 infection, unvaccinated, and the third group included 100 patients without a history of coronavirus infection. All patients during hospitalization excluded the presence of acute СOVID-19 infection by the RNA method using nucleic acid amplification.

Results. In all groups, the ratio of ischemic and hemorrhagic strokes was the same. The study groups did not differ in the tactics of stroke management in the acute period. The largest number of deaths was registered in the group of patients who had COVID-19 infection and weren’t vaccinated (17%). The number of deceased patients in second group was significantly higher compared to the number of deaths in the group of vaccinated patients (9%), p = 0.001. Deaths weren’t recorded in the group of patients with no history of COVID-19 infection.

Conclusion. Despite the highest prevalence of cardiovascular risk factors in the group of patients with a history of COVID-19 infection and vaccinated, significantly fewer deaths from stroke were recorded in this group compared to the group of patients who weren’t vaccinated against COVID-19 infection.

References

  1. Панель мониторинга ВОЗ по коронавирусу (COVID-19). Панель мониторинга ВОЗ по коронавирусу (COVID-19) с данными о вакцинации1. https://covid19.who.int/ (дата обращения 20.08.2024).
  2. Nogueira R.G., Qureshi M.M., Abdalkader M., Martins S.O., Yamagami H., Qiu Z. et al.; SVIN COVID-19 Global Stroke Registry; SVIN COVID-19 Global Stroke Registry. Global impact of COVID-19 on stroke care and IV thrombolysis. Neurology. 2021; 96 (23): e2824–e2838. DOI: 10.1212/WNL.0000000000011885
  3. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194: 145–158. DOI: 10.1016/j.virusres.2014.09.011
  4. Nannoni S., de Groot R., Bell S., Markus H.S. Stroke in COVID-19: a systematic review and meta-analysis. Int. J. Stroke. 2021; 16(2): 137–149. DOI: 10.1177/1747493020972922
  5. Spence J.D., de Freitas G.R., Pettigrew L.C., Ay H., Liebeskind D.S., Kase C.S. et al. Mechanisms of stroke in COVID-19. Cerebrovasc. Dis. 2020; 49 (4): 451–458. DOI: 10.1159/00050958
  6. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P. et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N. Engl. J. Med. 2020; 382 (20): e60. DOI: 10.1056/NEJMc2009787
  7. Heneka M.T., Golenbock D.T., Latz E. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alz. Res. Therapy. 2020; 12 (1): 69. DOI: 10.1186/s13195-020-00640-3
  8. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 2021; 11 (1): 16144. DOI: 10.1038/s41598-021-95565-8
  9. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21 (3): 133–146. DOI: 10.1038/s41579-022-00846-2
  10. Womack J.A., Chang C.C., So‐Armah K.A., Alcorn C., Baker J.V., Brown S.T. et al. HIV infection and cardiovascular disease in women. J. Am. Heart Assoc. 2014; 3 (5): e001035. DOI: 10.1161/JAHA.114.001035
  11. Oikonomou E., Souvaliotis N., Lampsas S., Siasos G., Poulakou G., Theofilis P. et al. Endothelial dysfunction in acute and long standing COVID−19: a prospective cohort study. Vascul. Pharmacol. 2022; 144: 106975. DOI: 10.1016/j.vph.2022.106975
  12. Joshee S., Vatti N., Chang C. Long-term effects of COVID-19. Mayo Clin. Proc. 2022; 97 (3): 579–599. DOI: 10.1016/j. mayocp.2021.12.017
  13. Klein J., Wood J., Jaycox J.R., Dhodapkar R.M., Lu P., Gehlhausen J.R. et al. Distinguishing features of Long COVID identified through immune profiling. Nature. 2023; 623: 139–148. DOI: 10.1038/s41586-023-06651-y
  14. Zuin M., Mazzitelli M., Rigatelli G., Bilato C., Cattelan A. M. Risk of ischemic stroke in patients recovered from COVID-19 infection: a systematic review and meta-analysis. Eur. Stroke J. 2023; 8 (4): 915–922. DOI: 10.1177/23969873231190432
  15. Lim J.T., Liang En.W., Tay A.T., Pang D., Chiew C.J., Ong B., Tan K.B. Long-term cardiovascular, cerebrovascular, and other thrombotic complications in COVID-19 survivors: a retrospective cohort study. Clinical Infectious Diseases. 2024; 78 (1): 70–79. DOI: 10.1093/cid/ciad469
  16. Subramanian A., Nirantharakumar K., Hughes S., Myles P., WilliamsT., Gokhale K.M. et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022; 28 (8): 1706–1714. DOI: 10.1038/s41591-022-01909-w
  17. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022; 28 (3): 583–590. DOI: 10.1038/ s41591-022-01689-3
  18. Atchison C.J., Davies B., Cooper E., Lound A., Whitaker M., Hampshire A. et al. Long-term health impacts of COVID-19 among 242,712 adults in England. Nat. Commun. 2023; 14 (1): 6588. DOI: 10.1038/s41467-023-41879-2
  19. Hamdh B.A., Nazzal Z. A prospective cohort study assessing the relationship between long-COVID symptom incidence in COVID-19 patients and COVID-19 vaccination. Sci Rep. 2023; 13: 4896. DOI: 10.1038/s41598-023-30583-2
  20. Wu W., Zheng X., Ding H., Miao T., Zang Y., Shen S., Gao Y. Association between combination COVID-19-influenza vaccination and long COVID in middle-aged and older Europeans: a cross-sectional study. Hum. Vaccin. Immunother. 2024; 20 (1): 2345505. DOI: 10.1080/21645515.2024.2345505
  21. Alammar M.A. Ischemic stroke after AstraZeneca (COVID-19) vaccination. Saudi Med. J. 2021; 42 (10): 1136–1139. DOI: 10.15537/ smj.2021.42.10.20210326
****
  1. WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19) Dashboard with Vaccination Data1. Available at: https:// covid19.who.int/ (accessed August 20, 2024).
  2. Nogueira R.G., Qureshi M.M., Abdalkader M., Martins S.O., Yamagami H., Qiu Z. et al.; SVIN COVID-19 Global Stroke Registry; SVIN COVID-19 Global Stroke Registry. Global impact of COVID-19 on stroke care and IV thrombolysis. Neurology. 2021; 96 (23): e2824–e2838. DOI: 10.1212/WNL.0000000000011885
  3. Desforges M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., Talbot P.J. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194: 145–158. DOI: 10.1016/j.virusres.2014.09.011
  4. Nannoni S., de Groot R., Bell S., Markus H.S. Stroke in COVID-19: a systematic review and meta-analysis. Int. J. Stroke. 2021; 16(2): 137–149. DOI: 10.1177/1747493020972922
  5. Spence J.D., de Freitas G.R., Pettigrew L.C., Ay H., Liebeskind D.S., Kase C.S. et al. Mechanisms of stroke in COVID-19. Cerebrovasc. Dis. 2020; 49 (4): 451–458. DOI: 10.1159/00050958
  6. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P. et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N. Engl. J. Med. 2020; 382 (20): e60. DOI: 10.1056/NEJMc2009787
  7. Heneka M.T., Golenbock D.T., Latz E. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alz. Res. Therapy. 2020; 12 (1): 69. DOI: 10.1186/s13195-020-00640-3
  8. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci. Rep. 2021; 11 (1): 16144. DOI: 10.1038/s41598-021-95565-8
  9. Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023; 21 (3): 133–146. DOI: 10.1038/s41579-022-00846-2
  10. Womack J.A., Chang C.C., So‐Armah K.A., Alcorn C., Baker J.V., Brown S.T. et al. HIV infection and cardiovascular disease in women. J. Am. Heart Assoc. 2014; 3 (5): e001035. DOI: 10.1161/JAHA.114.001035
  11. Oikonomou E., Souvaliotis N., Lampsas S., Siasos G., Poulakou G., Theofilis P. et al. Endothelial dysfunction in acute and long standing COVID−19: a prospective cohort study. Vascul. Pharmacol. 2022; 144: 106975. DOI: 10.1016/j.vph.2022.106975
  12. Joshee S., Vatti N., Chang C. Long-term effects of COVID-19. Mayo Clin. Proc. 2022; 97 (3): 579–599. DOI: 10.1016/j. mayocp.2021.12.017
  13. Klein J., Wood J., Jaycox J.R., Dhodapkar R.M., Lu P., Gehlhausen J.R. et al. Distinguishing features of Long COVID identified through immune profiling. Nature. 2023; 623: 139–148. DOI: 10.1038/s41586-023-06651-y
  14. Zuin M., Mazzitelli M., Rigatelli G., Bilato C., Cattelan A. M. Risk of ischemic stroke in patients recovered from COVID-19 infection: a systematic review and meta-analysis. Eur. Stroke J. 2023; 8 (4): 915–922. DOI: 10.1177/23969873231190432
  15. Lim J.T., Liang En.W., Tay A.T., Pang D., Chiew C.J., Ong B., Tan K.B. Long-term cardiovascular, cerebrovascular, and other thrombotic complications in COVID-19 survivors: a retrospective cohort study. Clinical Infectious Diseases. 2024; 78 (1): 70–79. DOI: 10.1093/cid/ciad469
  16. Subramanian A., Nirantharakumar K., Hughes S., Myles P., WilliamsT., Gokhale K.M. et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022; 28 (8): 1706–1714. DOI: 10.1038/s41591-022-01909-w
  17. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022; 28 (3): 583–590. DOI: 10.1038/ s41591-022-01689-3
  18. Atchison C.J., Davies B., Cooper E., Lound A., Whitaker M., Hampshire A. et al. Long-term health impacts of COVID-19 among 242,712 adults in England. Nat. Commun. 2023; 14 (1): 6588. DOI: 10.1038/s41467-023-41879-2
  19. Hamdh B.A., Nazzal Z. A prospective cohort study assessing the relationship between long-COVID symptom incidence in COVID-19 patients and COVID-19 vaccination. Sci Rep. 2023; 13: 4896. DOI: 10.1038/s41598-023-30583-2
  20. Wu W., Zheng X., Ding H., Miao T., Zang Y., Shen S., Gao Y. Association between combination COVID-19-influenza vaccination and long COVID in middle-aged and older Europeans: a cross-sectional study. Hum. Vaccin. Immunother. 2024; 20 (1): 2345505. DOI: 10.1080/21645515.2024.2345505
  21. Alammar M.A. Ischemic stroke after AstraZeneca (COVID-19) vaccination. Saudi Med. J. 2021; 42 (10): 1136–1139. DOI: 10.15537/ smj.2021.42.10.20210326

About Authors

  • Soro I. Salikhova, Сardiologist; ORCID
  • Mariya S. Leonteva, Therapeutist; ORCID
  • Svetlana A. Berns, Dr. Med. Sci., Рrofessor at the Chair of Therapy and General Medical Practice, Head of the Department for the Study of Pathogenetic Aspects of Aging; ORCID
  • Simon A. Papoyan, Dr. Med. Sci., Professor, Head of the Department of Vascular Surgery, Head of the Organizational and Methodological Department of Cardiovascular Surgery of Moscow City Health Department; ORCID
  • Evgeniya V. Tavlueva, Dr. Med. Sci., Head of the Regional Vascular Center, Professor at the Chair of Therapy and General Medical Practice with a course in Gastroenterology, Leading Researcher; ORCID

 If you found mistakes, select text and press Alt+A