Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Ключевые пути патогенеза диабет-ассоциированных кардиоваскулярных нарушений: молекулярные механизмы, прогностические факторы выживаемости

Авторы: Мамалыга М.Л.

Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России, Москва, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2025-22-2-119-133

УДК: 616.12:616.379-008.64

Библиографическая ссылка: Клиническая физиология кровообращения. 2025; 22 (2): 119-133

Цитировать как: Мамалыга М.Л. . Ключевые пути патогенеза диабет-ассоциированных кардиоваскулярных нарушений: молекулярные механизмы, прогностические факторы выживаемости. Клиническая физиология кровообращения. 2025; 22 (2): 119-133. DOI: 10.24022/1814-6910-2025-22-2-119-133

Ключевые слова: кардиоваскулярные нарушения, сахарный диабет, молекулярные механизмы, патогенез, гипергликемия, прогностические факторы, индивидуальная выживаемость

Поступила / Принята к печати:  19.05.2025 / 30.05.2025

Скачать (Download)


Аннотация

Цель исследования: комплексный анализ современных представлений о ключевых молекулярно-клеточных механизмах кардиоваскулярных нарушений при сахарном диабете, выяснение их роли в формировании клинических фенотипов осложнений и индивидуальной выживаемости.

Проведен анализ результатов современных фундаментальных и клинических исследований, посвященных изучению патогенетических механизмов, лежащих в основе факторов риска и клинических последствий сердечно- сосудистых нарушений у пациентов с сахарным диабетом, а также изучению взаимообусловленности диабет- ассоциированных кардиоваскулярных осложнений и их долгосрочных последствий. Работа направлена на информирование практикующих врачей о ключевых особенностях молекулярных, метаболических и патофизиологических процессов сердечно-сосудистых нарушений при сахарном диабете, оценку эпидемиологических и клинических рисков, а также описание долгосрочных последствий, таких как атеросклероз, ишемическая болезнь сердца, инфаркт миокарда и сердечная недостаточность. Особое внимание уделяется междисциплинарному подходу, позволяющему врачам и исследователям оптимизировать стратегии ранней диагностики, персонализированной профилактики и терапии, снижая смертность и улучшая качество жизни пациентов. Кроме того, статья акцентирует внимание на малоизученных аспектах проблемы и предлагает направления для дальнейших исследований, в частности, это касается роли новых биомаркеров, генетических факторов и инновационных терапевтических мишеней, что соответствует требованиям доказательной медицины.

Литература

  1. Zimmet P., Alberti K.G., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001; 414 (6865): 782–787. DOI: 10.1038/414782a
  2. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375 (9733): 2215–2222.
  3. Salvador D.B.Jr, Gamba M.R., Gonzalez-Jaramillo N., Gonzalez-Jaramillo V., Raguindin P.F.N., Minder B. et al. Diabetes and myocardial fibrosis: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2022; 15 (5): 796–808. DOI:10.1016/j.jcmg.2021.12.008
  4. Mamalyga M.L. Contemporary problems of cardiovascular disorders at diabetes mellitus. Endocrinology. 2016; 1 (1): 1–7. DOI:10.11648/j. ijde.20160101.11
  5. Голухова Е.З. Отчет о научной и лечебной работе Национального медицинского исследовательского центра сердечно-сосудистой хирургии им. А.Н. Бакулева Минздрава России за 2023 год и перспективы развития. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2024; 25 (Спецвыпуск): 5–141. DOI:10.24022/1810-0694-2024-25S
  6. Peters S.A.E., Huxley R.R., Woodward M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 2014; 57 (8): 1542–1551. DOI: 10.1007/s00125-014-3260-6
  7. Spanakis E.K., Golden S.H. Race/Ethnic Difference in Diabetes and Diabetic Complications. Curr Diab Rep. 2013; 13 (6): 814–823. DOI: 10.1007/s11892-013-0421-9
  8. Rawshani A., Sattar N., Franzén S., Rawshani A., Hattersley A.T., Svensson A.-M. et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018; 392 (10146): 477–486. DOI: 10.1016/S0140-6736(18)31506-X
  9. Brindisi M.C., Bouillet B., Verges B. Cardiovascular complications in type 1 diabetes mellitus. Diabetes Metab. 2010; 36 (5): 341–344. DOI: 10.1016/j.diabet.2010.06.002
  10. ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N. Engl. J. Med. 2011; 364 (9): 818– 828. DOI: 10.1056/NEJMoa1006524
  11. Xie J., Wang M., Long Z. , Ning J.Li., Cao Y. Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: systematic analysis of the Global Burden of Disease Study 2019. BMJ. 2022; 379: e072385. DOI: 10.1136/bmj-2022-072385
  12. Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhm-ki E., Hantel S. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015; 373 (22): 2117–2128. DOI: 10.1056/NEJMoa1504720
  13. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011; 364 (9): 829–841. DOI: 10.1056/NEJMoa1008862
  14. Singh G.C., Ahmed M., Zaid M. Biochemical, serological, and genetic aspects related to gene HLA‐DQB1 and its association with type 1 diabetes mellitus (T1DM). Mol. Genet. Genomic. Med. 2020; 8 (5): e1147.
  15. Bertoluci M.C., Cé G.V., Silva A.M., Wainstein M.V., Boff W., Puñales M. et al. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes. World J. Diabetes. 2015; 6 (5): 679–692. DOI: 10.4239/wjd.v6.i5.679
  16. Scheen A.J. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus: part 2. Overview of physiological and biochemical mechanisms. Diabetes Metab. 2004; 30 (6): 498–505. DOI: 10.1016/S1262-3636(07)70147-7
  17. ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 2010; 362 (17): 1575–1585. DOI: 10.1056/NEJMoa1001286
  18. Tang W.W., McGee P., Lachin J.M., Li D.Y., Hoogwerf B., Hazen S.L. et al. Oxidative stress and cardiovascular risk in type 1 diabetes mellitus: insights from the DCCT/EDIC study. J. Am. Heart Assoc. 2018; 7 (10): e008368. DOI: 10.1161/JAHA.117.008368
  19. Meijers W.C., López-Andrés N., de Boer R.A. Galectin-3, cardiac function, and fibrosis. Am. J. Pathol. 2016; 186 (8): 2232–2234.
  20. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 379 (12): 1119–1131. DOI: 10.1056/NEJMoa1707914
  21. McGruder H.F., Malarcher A.M., Antoine T.L. Racial and ethnic disparities in cardiovascular risk factors among stroke survivors: United States 1999 to 2001. Stroke. 2004; 35 (7): 1557–1561.
  22. Kawano Y., Takemoto M., Mito T., Morisaki H., Tanaka A., Sakaki Y. et al. Silent myocardial ischemia in asymptomatic patients with type 2 diabetes mellitus without previous histories of cardiovascular disease. Int. J. Cardiol. 2016; 216: 151–155. DOI: 10.1016/j.ijcard.2016.04.008
  23. González P., Lozano P., Ros G., Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023; 24 (11): 9352. DOI: 10.3390/ijms24119352
  24. Basu A., Jenkins A.J., Zhang Y., Stoner J.A., Klein R.L., Lopes-Virella M.F. et al. Nuclear magnetic resonance-determined lipoprotein subclasses and carotid intima-media thickness in type 1 diabetes. Atherosclerosis. 2016; 244: 93–100. DOI: 10.1016/j.atherosclerosis.2015.10.106
  25. American Diabetes Association. Standards of care in diabetes – 2023. Diabetes Care. 2023; 46 (Suppl 1): S1–S267. DOI: 10.2337/dc24-S005
  26. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010; 107 (9): 1058–1070. DOI: 10.1161/CIRCRESAHA.110.223545
  27. Geraldes P., King G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res. 2010; 106 (8): 1319–1331. DOI: 10.1161/CIRCRESAHA.110.217117
  28. Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44 (2): 129–146. DOI: 10.1007/s001250051591
  29. Peppa M., Uribarri J., Vlassara H. The role of advanced glycation end products in the development of atherosclerosis. Curr. Diab. Rep. 2004; 4 (1): 31–36. DOI: 10.1007/s11892-004-0008-6
  30. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109 (23 Suppl 1): III27–III32. DOI: 10.1161/01.CIR.0000131515.03336.f8
  31. Libby P., Ridker P.M., Hansson G.K. Leducq transatlantic network on atherothrombosis. inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 2009; 54 (23): 2129–2138. DOI: 10.1016/j.jacc.2009.09.009
  32. Montezano A.C., Dulak-Lis M., Tsiropoulou S., Harvey A., Briones A.M., Touyz R.M. et al. Oxidative stress and human hypertension: Vascular mechanisms, biomarkers, and novel therapies. Can. J. Cardiol. 2015; 31 (5): 631–641. DOI: 10.1016/j.cjca.2015.02.008
  33. Boudina S.,Abe lE. D. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25): 3213–3223. DOI:10.1161/CIRCULATIONAHA.106.679597
  34. Rutter M.K., Meigs J.B., Sullivan L.M. Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes. 2005; 54 (11): 3252–3257. DOI: 10.2337/diabetes.54.11.3252
  35. Singh G.M., Danaei G., Farzadfar F., Woodward M., Wormser D., Kaptoge S. et al. Prospective Studies Collaboration (PSC). The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One. 2013; 8 (7): e65174. DOI: 10.1371/journal.pone.0065174
  36. Moore K.J., Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011; 145 (3): 341–355. DOI: 10.1016/j.cell.2011.04.005
  37. Kunjathoor V.V., Febbraio M., Podrez E.A., Moore K.J., Andersson L., Koehn S. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 2002; 277 (51): 49982–49988. DOI: 10.1074/jbc.M209649200
  38. Schieffer B., Selle T., Hilfiker A., Hilfiker-Kleiner D., Grote K., Tietge U.J.F. et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 2004; 110 (22): 3493–3500. DOI: 10.1161/01.CIR.0000148135.08582.97
  39. Geng Y.J., Wu Q., Muszynski M. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-γ, tumor necrosis factor-α, and interleukin-1β. Arterioscler. Thromb. Vasc. Biol. 1996; 16 (1): 19–27. DOI: 10.1161/01.ATV.16.1.19
  40. Newby A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 2005; 85 (1): 1–31. DOI: 10.1152/physrev.00048.2003
  41. Мамалыга М.Л. Сахарный диабет и его роль в формировании сердечно-сосудистых нарушений. – М.: Прометей; 2016.
  42. Heusch G., Sipido K.R. Myocardial hibernation: a double-edged sword. Circ. Res. 2004; 94 (8): 1005–1007. DOI: 10.1161/01.RES.0000128071.90075.e3
  43. Jia G., Hill M.A., Sowers J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018; 122 (4): 624–638. DOI: 10.1161/CIRCRESAHA.117.311586
  44. Yan S.F., Ramasamy R., Schmidt A.M. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert. Rev. Mol. Med. 2009; 11: e9. DOI: 10.1017/S1462399409000989
  45. From A.M., Scott C.G., Chen H.H. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction: A population-based study. J. Am. Coll. Cardiol. 2010; 55 (4): 300–305. DOI: 10.1016/j.jacc.2009.12.003
  46. Tamis-Holland J.E., Jneid H., Reynolds H.R., Agewall S., Brilakis E.S., Brown T.M. et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: A scientific statement from the American Heart Association. Circulation. 2019; 139 (18): e891–e908. DOI: 10.1161/CIR.0000000000000670
  47. Horton W.B., Barrett E.J. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr. Rev. 2021; 42 (1): 29–55. DOI: 10.1210/endrev/bnaa025
  48. Bairey Merz C.N., Pepine C.J., Walsh M.N., Fleg J.L., Camici P.G., Chilian W.M. et al. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017; 135 (11): 1075–1092. DOI: 10.1161/CIRCULATIONAHA.116.024534
  49. Movahed M.R., Hashemzadeh M., Jamal M.M. Increased prevalence of ventricular fibrillation in patients with type 2 diabetes mellitus. Heart Vessels. 2007; 22 (4): 251–253. DOI: 10.1007/s00380-006-0962-9
  50. Бузиашвили Ю.И., Асымбекова Э.У., Иошина В.И., Кокшенева И.В. Результаты лечебной и научной работы клинико-диагностического отделения ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» Минздрава России за 2020 год. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2022; 23 (1): 120–129. DOI: 10.24022/1810-0694-2022-23-1-130-133
  51. Олофинская И.Е., Гасанбекова И.И., Чукалин А.С., Думпе А.Н., Никонов С.Ф., Муратов Р.М., Скопин И.И. Влияние коморбидной патологии на результаты хирургического лечения клапанных пороков сердца в условиях искусственного кровообращения у пациентов старше 80 лет. Грудная и сердечно-сосудистая хирургия. 2022; 64 (1): 31–38. DOI: 10.24022/0236-2791-2022-64-1-31-38
  52. Ляпина И.Н., Дрень Е.В., Кузьмина О.К., Осинцев Е.С., Стасев А.Н., Евтушенко А.В., Барбараш О.Л. Десятилетняя динамика фенотипа пациентов, подвергшихся хирургической коррекции приобретенных пороков клапанов сердца: результаты одноцентрового регистра. Грудная и сердечно-сосудистая хирургия. 2023; 66 (3): 302–310. DOI: 10.24022/0236-2791-2024-66-3-302-310
  53. Einarson T.R., Acs A., Ludwig C. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018; 17 (1): 83. DOI: 10.1186/s12933-018-0728-6
  54. Yandrapalli S., Nabors C., Goyal A., Aronow W.S., Frishman W.H. Modifiable risk factors in young adults with first myocardial infarction. J. Am. Coll. Cardiol. 2019; 73 (5): 573–584. DOI: 10.1016/j.jacc.2018.10.084
  55. Kautzky-Willer A., Harreiter J., Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016; 37 (3): 278–316. DOI: 10.1210/er.2015-1137
  56. Zhang Y., Li Q., Xin Y. Association between chronic obstructive pulmonary disease and mortality in patients with diabetes: a meta-analysis of cohort studies. BMJ Open. 2020; 10 (1): e038219. DOI: 10.1136/bmjopen-2020-038219
  57. Afkarian M., Sachs M.C., Kestenbaum B., Hirsch I.B., Tuttle K.R., Himmelfarb J., Boer I.H. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 2013; 24 (2): 302–308. DOI: 10.1681/ASN.2012070718
  58. Pop-Busui R., Boulton A.J.M., Feldman E.L., Bril V., Freeman R., Malik R.A. et al. Diabetic neuropathy: a position statement by the american diabetes association. Diabetes Care. 2017; 40 (1): 136–154. DOI: 10.2337/dc16-2042
  59. Liu H.H., Cao Y.X., Jin J.L. High-sensitivity C-Reactive protein as a risk predictor of cardiovascular and all-cause mortality in patients with type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart. Assoc. 2019; 8 (21): e013266. DOI: 10.1161/JAHA.119.013266
  60. Голухова Е.З., Керен М.А., Волковская И.В., Яхяева К.Б., Завалихина Т.В., Авакова С.А. и соавт. Существует ли «парадокс ожирения» в коронарной хирургии? Влияние индекса массы тела на госпитальные исходы и трехлетнюю выживаемость после коронарного шунтирования. Креативная кардиология. 2023; 17 (2): 247–255. DOI: 10.24022/1997-3187-2023-17-2-247-255
****
  1. Zimmet P., Alberti K.G., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001; 414 (6865): 782–787. DOI: 10.1038/414782a
  2. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375 (9733): 2215–2222.
  3. Salvador D.B.Jr, Gamba M.R., Gonzalez-Jaramillo N., Gonzalez-Jaramillo V., Raguindin P.F.N., Minder B. et al. Diabetes and myocardial fibrosis: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2022; 15 (5): 796–808. DOI:10.1016/j.jcmg.2021.12.008
  4. Mamalyga M.L. Contemporary problems of cardiovascular disorders at diabetes mellitus. Endocrinology. 2016; 1 (1): 1–7. DOI:10.11648/j. ijde.20160101.11
  5. Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue): 5–141 (in Russ). DOI: 10.24022/1810-0694-2024-25S
  6. Peters S.A.E., Huxley R.R., Woodward M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 2014; 57 (8): 1542–1551. DOI: 10.1007/s00125-014-3260-6
  7. Spanakis E.K., Golden S.H. Race/Ethnic Difference in Diabetes and Diabetic Complications. Curr Diab Rep. 2013; 13 (6): 814–823. DOI: 10.1007/s11892-013-0421-9
  8. Rawshani A., Sattar N., Franzén S., Rawshani A., Hattersley A.T., Svensson A.-M. et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018; 392 (10146): 477–486. DOI: 10.1016/S0140-6736(18)31506-X
  9. Brindisi M.C., Bouillet B., Verges B. Cardiovascular complications in type 1 diabetes mellitus. Diabetes Metab. 2010; 36 (5): 341–344. DOI: 10.1016/j.diabet.2010.06.002
  10. ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N. Engl. J. Med. 2011; 364 (9): 818– 828. DOI: 10.1056/NEJMoa1006524
  11. Xie J., Wang M., Long Z. , Ning J.Li., Cao Y. Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: systematic analysis of the Global Burden of Disease Study 2019. BMJ. 2022; 379: e072385. DOI: 10.1136/bmj-2022-072385
  12. Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhm-ki E., Hantel S. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015; 373 (22): 2117–2128. DOI: 10.1056/NEJMoa1504720
  13. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011; 364 (9): 829–841. DOI: 10.1056/NEJMoa1008862
  14. Singh G.C., Ahmed M., Zaid M. Biochemical, serological, and genetic aspects related to gene HLA‐DQB1 and its association with type 1 diabetes mellitus (T1DM). Mol. Genet. Genomic. Med. 2020; 8 (5): e1147.
  15. Bertoluci M.C., Cé G.V., Silva A.M., Wainstein M.V., Boff W., Puñales M. et al. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes. World J. Diabetes. 2015; 6 (5): 679–692. DOI: 10.4239/wjd.v6.i5.679
  16. Scheen A.J. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus: part 2. Overview of physiological and biochemical mechanisms. Diabetes Metab. 2004; 30 (6): 498–505. DOI: 10.1016/S1262-3636(07)70147-7
  17. ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 2010; 362 (17): 1575–1585. DOI: 10.1056/NEJMoa1001286
  18. Tang W.W., McGee P., Lachin J.M., Li D.Y., Hoogwerf B., Hazen S.L. et al. Oxidative stress and cardiovascular risk in type 1 diabetes mellitus: insights from the DCCT/EDIC study. J. Am. Heart Assoc. 2018; 7 (10): e008368. DOI: 10.1161/JAHA.117.008368
  19. Meijers W.C., López-Andrés N., de Boer R.A. Galectin-3, cardiac function, and fibrosis. Am. J. Pathol. 2016; 186 (8): 2232–2234.
  20. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 379 (12): 1119–1131. DOI: 10.1056/NEJMoa1707914
  21. McGruder H.F., Malarcher A.M., Antoine T.L. Racial and ethnic disparities in cardiovascular risk factors among stroke survivors: United States 1999 to 2001. Stroke. 2004; 35 (7): 1557–1561.
  22. Kawano Y., Takemoto M., Mito T., Morisaki H., Tanaka A., Sakaki Y. et al. Silent myocardial ischemia in asymptomatic patients with type 2 diabetes mellitus without previous histories of cardiovascular disease. Int. J. Cardiol. 2016; 216: 151–155. DOI: 10.1016/j.ijcard.2016.04.008
  23. González P., Lozano P., Ros G., Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. Int. J. Mol. Sci. 2023; 24 (11): 9352. DOI: 10.3390/ijms24119352
  24. Basu A., Jenkins A.J., Zhang Y., Stoner J.A., Klein R.L., Lopes-Virella M.F. et al. Nuclear magnetic resonance-determined lipoprotein subclasses and carotid intima-media thickness in type 1 diabetes. Atherosclerosis. 2016; 244: 93–100. DOI: 10.1016/j.atherosclerosis.2015.10.106
  25. American Diabetes Association. Standards of care in diabetes – 2023. Diabetes Care. 2023; 46 (Suppl 1): S1–S267. DOI: 10.2337/dc24-S005
  26. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010; 107 (9): 1058–1070. DOI: 10.1161/CIRCRESAHA.110.223545
  27. Geraldes P., King G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res. 2010; 106 (8): 1319–1331. DOI: 10.1161/CIRCRESAHA.110.217117
  28. Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001; 44 (2): 129–146. DOI: 10.1007/s001250051591
  29. Peppa M., Uribarri J., Vlassara H. The role of advanced glycation end products in the development of atherosclerosis. Curr. Diab. Rep. 2004; 4 (1): 31–36. DOI: 10.1007/s11892-004-0008-6
  30. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109 (23 Suppl 1): III27–III32. DOI: 10.1161/01.CIR.0000131515.03336.f8
  31. Libby P., Ridker P.M., Hansson G.K. Leducq transatlantic network on atherothrombosis. inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 2009; 54 (23): 2129–2138. DOI: 10.1016/j.jacc.2009.09.009
  32. Montezano A.C., Dulak-Lis M., Tsiropoulou S., Harvey A., Briones A.M., Touyz R.M. et al. Oxidative stress and human hypertension: Vascular mechanisms, biomarkers, and novel therapies. Can. J. Cardiol. 2015; 31 (5): 631–641. DOI: 10.1016/j.cjca.2015.02.008
  33. Boudina S.,Abe lE. D. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25): 3213–3223. DOI:10.1161/CIRCULATIONAHA.106.679597
  34. Rutter M.K., Meigs J.B., Sullivan L.M. Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes. 2005; 54 (11): 3252–3257. DOI: 10.2337/diabetes.54.11.3252
  35. Singh G.M., Danaei G., Farzadfar F., Woodward M., Wormser D., Kaptoge S. et al. Prospective Studies Collaboration (PSC). The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One. 2013; 8 (7): e65174. DOI: 10.1371/journal.pone.0065174
  36. Moore K.J., Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011; 145 (3): 341–355. DOI: 10.1016/j.cell.2011.04.005
  37. Kunjathoor V.V., Febbraio M., Podrez E.A., Moore K.J., Andersson L., Koehn S. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 2002; 277 (51): 49982–49988. DOI: 10.1074/jbc.M209649200
  38. Schieffer B., Selle T., Hilfiker A., Hilfiker-Kleiner D., Grote K., Tietge U.J.F. et al. Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 2004; 110 (22): 3493–3500. DOI: 10.1161/01.CIR.0000148135.08582.97
  39. Geng Y.J., Wu Q., Muszynski M. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-γ, tumor necrosis factor-α, and interleukin-1β. Arterioscler. Thromb. Vasc. Biol. 1996; 16 (1): 19–27. DOI: 10.1161/01.ATV.16.1.19
  40. Newby A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 2005; 85 (1): 1–31. DOI: 10.1152/physrev.00048.2003
  41. Mamalyga M.L. Diabetes mellitus and its role in the formation of cardiovascular disorders. – Moscow: Prometheus; 2016 (in Russ.).
  42. Heusch G., Sipido K.R. Myocardial hibernation: a double-edged sword. Circ. Res. 2004; 94 (8): 1005–1007. DOI: 10.1161/01.RES.0000128071.90075.e3
  43. Jia G., Hill M .A., Sowers J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018; 122 (4): 624–638. DOI: 10.1161/CIRCRESAHA.117.311586
  44. Yan S.F., Ramasamy R., Schmidt A.M. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert. Rev. Mol. Med. 2009; 11: e9. DOI: 10.1017/S1462399409000989
  45. From A.M., Scott C.G., Chen H.H. The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction: A population-based study. J. Am. Coll. Cardiol. 2010; 55 (4): 300–305. DOI: 10.1016/j.jacc.2009.12.003
  46. Tamis-Holland J.E., Jneid H., Reynolds H.R., Agewall S., Brilakis E.S., Brown T.M. et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: A scientific statement from the American Heart Association. Circulation. 2019; 139 (18): e891–e908. DOI: 10.1161/CIR.0000000000000670
  47. Horton W.B., Barrett E.J. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr. Rev. 2021; 42 (1): 29–55. DOI: 10.1210/endrev/bnaa025
  48. Bairey Merz C.N., Pepine C.J., Walsh M.N., Fleg J.L., Camici P.G., Chilian W.M. et al. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation. 2017; 135 (11): 1075–1092. DOI: 10.1161/CIRCULATIONAHA.116.024534
  49. Movahed M.R., Hashemzadeh M., Jamal M.M. Increased prevalence of ventricular fibrillation in patients with type 2 diabetes mellitus. Heart Vessels. 2007; 22 (4): 251–253. DOI: 10.1007/s00380-006-0962-9
  50. Buziashvili Yu.I., Asymbekova E.U., Ioshina V.I., Koksheneva I.V. The results of the medical and scientific work of the Clinical-Diagnostic Department of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2020. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2022; 23 (1): 120–129 (in Russ.). DOI: 10.24022/1810-0694-2022-23-1-130-133
  51. Olofinskaya I.E., Gasanbekova I.I., Chukalin A.S., Dumpe A.N., Nikonov S.F., Muratov R.M., Skopin I.I. The influence of comorbid pathology on the results of surgical treatment of valvular defects under cardiopulmonary bypass in patients over 80 years old. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2022; 64 (1): 31–38 (in Russ.). DOI: 10.24022/0236-2791-2022-64-1-31-38
  52. Lyapina I.N., Dren E.V., Kuzmina O.K., Osintsev E.S., Stasev A.N., Evtushenko A.V., Barbarash O.L. Ten-year dynamics of the phenotype of patients undergoing surgical correction of valvular heart diseases: results of a single-center registry. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2024; 66 (3): 302–310 (in Russ.). DOI: 10.24022/0236-2791-2024-66-3-302-310
  53. Einarson T.R., Acs A., Ludwig C. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018; 17 (1): 83. DOI: 10.1186/s12933-018-0728-6
  54. Yandrapalli S., Nabors C., Goyal A., Aronow W.S., Frishman W.H. Modifiable risk factors in young adults with first myocardial infarction. J. Am. Coll. Cardiol. 2019; 73 (5): 573–584. DOI: 10.1016/j.jacc.2018.10.084
  55. Kautzky-Willer A., Harreiter J., Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr. Rev. 2016; 37 (3): 278–316. DOI: 10.1210/er.2015-1137
  56. Zhang Y., Li Q., Xin Y. Association between chronic obstructive pulmonary disease and mortality in patients with diabetes: a meta-analysis of cohort studies. BMJ Open. 2020; 10 (1): e038219. DOI: 10.1136/bmjopen-2020-038219
  57. Afkarian M., Sachs M.C., Kestenbaum B., Hirsch I.B., Tuttle K.R., Himmelfarb J., Boer I.H. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 2013; 24 (2): 302–308. DOI: 10.1681/ASN.2012070718
  58. Pop-Busui R., Boulton A.J.M., Feldman E.L., Bril V., Freeman R., Malik R.A. et al. Diabetic neuropathy: a position statement by the american diabetes association. Diabetes Care. 2017; 40 (1): 136–154. DOI: 10.2337/dc16-2042
  59. Liu H.H., Cao Y.X., Jin J.L. High-sensitivity C-Reactive protein as a risk predictor of cardiovascular and all-cause mortality in patients with type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart. Assoc. 2019; 8 (21): e013266. DOI: 10.1161/JAHA.119.013266
  60. Golukhova E.Z., Keren M.A., Volkovskaya I.V., Yakhyaeva K.B., Zavalikhina T.V., Avakova S.A. et al. Is there “obesity paradox” in coronary surgery? Effect of body mass index on hospital outcomes and three-year survival after coronary bypass surgery. Creative Cardiology. 2023; 17(2): 247–255 (in Russ.). DOI: 10.24022/1997-3187-2023-17-2-247-255

Об авторах

Мамалыга Максим Леонидович, д-р мед. наук, вед. науч. сотр.; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A