Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Дисфункция коронарных шунтов: патофизиологические аспекты и методы профилактики

Авторы: Ирасханов А.Ш., Кокшенёва И.В., Идрисова З.М., Ахмедов М.Б.

Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России, Москва, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2022-19-2-109-118

УДК: 616.132.2-008-089

Библиографическая ссылка: Клиническая физиология кровообращения. 2022; 2 (19): 109-118

Цитировать как: Ирасханов А.Ш., Кокшенёва И.В., Идрисова З.М., Ахмедов М.Б. . Дисфункция коронарных шунтов: патофизиологические аспекты и методы профилактики. Клиническая физиология кровообращения. 2022; 2 (19): 109-118. DOI: 10.24022/1814-6910-2022-19-2-109-118

Ключевые слова: аортокоронарное шунтирование, ишемическая болезнь сердца, дисфункция шунтов, тромбоз, атеросклероз

Поступила / Принята к печати:  20.12.2021 / 24.02.2022

Скачать (Download)


Аннотация

Ишемическая болезнь сердца является наиболее распространенной сердечно-сосудистой патологией и во многих экономически развитых странах занимает ведущее место среди всех причин заболеваемости и смертности. Коронарное шунтирование служит предпочтительным методом реваскуляризации у пациентов с многососудистым поражением. Одним из частых осложнений после проведения коронарного шунтирования является дисфункция шунтов. В настоящее время формируются разнообразные стратегии, направленные на профилактику дисфункции шунтов, включающие совершенствование хирургической техники, более активную антиагрегантную терапию, интенсивную модификацию факторов риска, в частности раннюю гиполипидемическую терапию в высоких дозах, и ряд развивающихся методов лечения, таких как перенос генов и введение донаторов окиси азота, которые направлены на предотвращение дисфункции шунтов в раннем послеоперационном периоде.

В данном обзоре литературы рассматриваются некоторые значимые механизмы развития дисфункции шунтов и методы ее профилактики.

Литература

  1. Пизов А.В., Пизов Н.А., Скачкова О.А., Пизова Н.В. Эндотелиальная дисфункция как ранний предиктор атеросклероза. Медицинский алфавит. 2020; 4 (35): 28–33. DOI: 10.33667/2078-5631-2019-4-35 (410)-28-33
  2. Brel N.K., Kokov A.N., Gruzdeva O.V. Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obes. Metab. 2019; 15 (4): 3–8. DOI: 10.14341/omet9510
  3. Соколова Н.Ю., Голухова Е.З. Реваскуляризация миокарда у больных стабильной ишемической болезнью сердца: стратификация периоперационных и отдаленных рисков. Креативная кардиология. 2016; 10 (1): 25–36. DOI: 10.15275/kreatkard.2016.01.03
  4. Голубев Е.П., Камбаров С.Ю., Мерзляков В.Ю. Особенности клинического течения ишемической болезни сердца у больных молодого возраста, планирующихся на реваскуляризацию миокарда. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2009; 10 (S1): 264–71.
  5. Nowicki M., Buczkowski P., Miskowiak B., Konwerska A., Ostalska-Nowicka D., Dyszkiewicz W. Immunocytochemical study on endothelial integrity of saphenous vein grafts harvested by minimally invasive surgery with the use of vascular mayo stripers. A randomized controlled trial. Eur. J. Vasc. Endovasc. Surg. 2004; 27 (3): 244–50. DOI: 10.1016/j.ejvs.2003.12.023
  6. Neumann F.-J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019; 40 (2): 87–165. DOI: 10.1093/eurheartj/ehy394
  7. Tian M., Wang X., Sun H., Feng W., Song Y., Lu F., Hu S. No-touch versus conventional vein harvesting techniques at 12 months after coronary artery bypass grafting surgery: multicenter randomized, controlled trial. Circulation. 2021; 144 (14): 1120–9. DOI: 10.1161/CIRCULATIONAHA.121.055525
  8. Ta¸soˇglu . I., Turak O., Nazli Y., Özcan F., Colak N., Sahin S. et al. Preoperative neutrophil-lymphocyte ratio and saphenous vein graft patency after coronary artery bypass grafting. Clin. Appl. Thromb. Hemost. 2014; 20 (8): 819–24. DOI: 10.1177/1076029613484086
  9. Nowicki M., Perek B. Histological analysis in graft disease. In: Coronary graft failure. Springer, Cham; 2016: 219–25. DOI: 10.1007/978-3-319-26515-5_21
  10. Nowicki M., Misterski M., Malinska A., Perek B., Ostalska-Nowicka D., Jemielity M., Zabel M. Endothelial integrity of radial artery grafts harvested by minimally invasive surgery – immunohistochemical studies of CD31 and endothelial nitric oxide synthase expressions: a randomized controlled trial. Eur. J. CardioThorac. Surg. 2011; 39 (4): 471–7. DOI: 10.1016/j.ejcts.2010.08.005
  11. Fan Dong Li, Sexton K.W., Hocking K.M., Osgood M.J., Eagle S., Cheung-Flynn J. et al. Intimal thickness associated with endothelial dysfunction in human vein grafts. J. Surg. Res. 2013; 180 (1): e55–e62. DOI: 10.1016/j.jss.2012.06.017
  12. Wadey K., Lopes J., Bendeck M., George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc. Res. 2018; 114 (4): 601–10. DOI: 10.1093/cvr/cvy021
  13. Caliskan E., De Souza D.R., Böning A., Liakopoulos O.J., Choi Y.H., Pepper J., Emmert M.Y. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat. Rev. Cardiol. 2020; 17 (3): 155–69. DOI: 10.1038/s41569-019-0249-3
  14. Thakar R.G., Cheng Q., Patel S., Chu J., Nasir M., Liepmann D., Li S. Cell-shape regulation of smooth muscle cell proliferation. Biophysic. J. 2009; 96 (8): 3423–32. DOI: 10.1016/j.bpj.2008.11.074
  15. Kraler S., Libby P., Evans P.C., Akhmedov A., Schmiady M.O., Reinehr M. et al. Resilience of the internal mammary artery to atherogenesis: shifting from risk to resistance to address unmet needs. Arterioscl. Thromb. Vasc. Biol. 2021; 41: 2237–51. DOI: 10.1161/ATVBAHA.121.316256
  16. Poduri A., Rateri D.L., Howatt D.A., Balakrishnan A., Moorleghen J.J., Cassis L.A., Daugherty A. Fibroblast angiotensin II type 1a receptors contribute to angiotensin II – induced medial hyperplasia in the ascending aorta. Arterioscl. Thromb. Vasc. Biol. 2015; 35 (9): 1995–2002. DOI: 10.1161/ATVBAHA.115.305995
  17. Ham O., Lee S.Y., Song B.W., Lee C.Y., Lee J., Seo H.H. et al. Small molecule-mediated induction of miR-9 suppressed vascular smooth muscle cell proliferation and neointima formation after balloon injury. Oncotarget. 2017; 8 (55): 93360–72. DOI: 10.18632/oncotarget.21382
  18. Grus T., Grusova G., Lambert L., Banerjee R., Matìcha J., Mlìek M. The influence of the anastomosis angle on the hemodynamics in the distal anastomosis in the infrainguinal bypass: an in vitro study. Physiol. Res. 2016; 65 (4): 591. DOI: 10.33549/physiolres.933176
  19. Sur S., Sugimoto J.T., Agrawal D.K. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can. J. Physiol. Pharmacol. 2014; 92 (7): 531–45. DOI: 10.1139/cjpp-2013-0445
  20. Cristian G., Vintila A.M., Ionita-Radu F., Hantulie I., Ioan A.M., Savoiu D., Sava N. Mechanisms of venous graft failure. In: Coronary graft failure. Springer, Cham. 2016: 267–76. DOI: 10.1007/978-3-319-26515-5_24
  21. Вечерский Ю.Ю., Манвелян Д.В., Затолокин В.В., Шипулин В.М. Венозные кондуиты в коронарной хирургии: старые проблемы – новые решения. Сибирский журнал клинической и экспериментальной медицины. 2019; 34 (1): 24–32. DOI: 10.29001/2073- 8552-2019-34-1-24-32 Vechersky Yu.Yu., Manvelyan D.V., Zatolokin V.V., Shipulin V.M. Venous conduits in coronary surgery: old problems – new solutions. Siberian Journal of Clinical and Experimental Medicine. 2019; 34 (1): 24–32. DOI: 10.29001/2073-8552-2019-34-1-24-32
  22. Woodward L.C., Antoniades C., Taggart D.P. Intraoperative vein graft preservation: what is the solution? Ann. Thorac. Surg. 2016; 102 (5): 1736–46. DOI: 10.1016/j.athoracsur.2016.05.097
  23. Xiao L., Luo G., Guo X., Jiang C., Zeng H., Zhou F., Yao P. Macrophage iron retention aggravates atherosclerosis: evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim. Biophys. Acta (BBA) Molec. Cell Biol. Lip. 2020; 1865 (2): 158531. DOI: 10.1016/j.bbalip.2019.158531
  24. Winkler B., Reineke D., Heinisch P.P., Schönhoff F., Huber C., Kadner A., Carrel T. Graft preservation solutions in cardiovascular surgery. Interact. Cardiovasc. Thorac. Surg. 2016; 23 (2): 300–9. DOI: 10.1093/icvts/ivw056
  25. Weglarz P., Bochenek T., Bajor G., Mizia-Stec K., Krejca M., Trusz-Gluza M. Early stage of atherosclerosis in aortocoronary saphenous vein grafts: intravascular ultrasound study. Brazil. J. Cardiovasc. Surg. 2019; 34: 560–4. DOI: 10.21470/1678-9741-2018-0221 26. Li X., Zhao H. Mechanical and degradation properties of small-diameter vascular grafts in an in vitro biomimetic environment. J. Biomat. Applic. 2019; 33 (8): 1017–34. DOI: 10.1177%2F0885328218820751
  26. Seo J., Ramachandra A.B., Boyd J., Marsden A.L., Kahn A.M. Computational evaluation of venous graft geometries in coronary artery bypass surgery. Semin. Thorac. Cardiovasc. Surg. 2021; 34 (2): 521–32. DOI: 10.1053/j.semtcvs.2021.03.007
  27. Yilmaz M.B., Guray U., Guray Y., Biyikoglu S.F., Tandogan I., Sasmaz H., Korkmaz S. Metabolic syndrome negatively impacts early patency of saphenous vein grafts. Coron. Art. Dis. 2006; 17 (1): 41–4. DOI: 10.1016/j.thromres.2006.07.004
  28. Van Diepen S., Fuster V., Verma S., Hamza T.H., Siami F.S., Goodman S.G., Farkouh M.E. Dual antiplatelet therapy versus aspirin monotherapy in diabetics with multivessel disease undergoing CABG: FREEDOM 118 Reviews Clinical Physiology of Circulation. 2022; 19 (2). DOI: 10.24022/1814-6910-2022-19-2-109-118 insights. J. Am. Coll. Cardiol. 2017; 69 (2): 119–27. DOI: 10.1016/j.jacc.2016.10.043
  29. Harskamp R.E., Alexander J.H., Schulte P.J., Brophy C.M., Mack M.J., Peterson E.D., Lopes R.D. Vein graft preservation solutions, patency, and outcomes after coronary artery bypass graft surgery: follow-up from the PREVENT IV randomized clinical trial. JAMA Surg. 2014; 149 (8): 798–805. DOI: 10.1001/jama.294.19.2446
  30. Kockx M.M., DeMeyer G.R.Y., Bortier H., deMeyere N., Muhring J., Bakker A. et al. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation. 1996; 94: 1255–62. DOI: 10.1161/01.cir.94.6.1255
  31. Oezkur M., Gorski A., Peltz J., Wagner M., Lazariotou M., Schimmer C., Leyh R.G. Preoperative serum h-FABP concentration is associated with postoperative incidence of acute kidney injury in patients undergoing cardiac surgery. BMC Cardiovasc. Disord. 2014; 14 (1): 1–6. DOI: 10.1186/1471-2261-14-117
  32. Ijaz M., Wang F., Shahbaz M., Jiang W., Fathy A.H., Nesa E.U. The role of Grb2 in cancer and peptides as Grb2 antagonists. Prot. Pept. Lett. 2017; 24 (12): 1084–95. DOI: 10.2174/0929866525666171123213148
  33. Wilbring M., Tugtekin S.M., Zatschler B., Ebner A., Reichenspurner H., Matschke K., Deussen A. Even short-time storage in physiological saline solution impairs endothelial vascular function of saphenous vein grafts. Eur. J. Cardio-Thorac. Surg. 2011; 40 (4): 811–5. DOI: 10.1016/j.ejcts.2011.01.024
  34. Bouhout I., Ali W.B., Perrault L.P. The effect of storage solutions on endothelial function and saphenous vein graft patency. Ind. J. Thorac. Cardiovasc. Surg. 2018; 34 (3): 258–65. DOI: 10.1007/s12055-018-0720-5
  35. Bakaeen F.G., Blackstone E.H., Pettersson G.B., Gillinov A.M., Svensson L.G. The father of coronary artery bypass grafting: René Favaloro and the 50th anniversary of coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2018; 155 (6): 2324–8. DOI: 10.1016/j.jtcvs.2017.09.167
  36. Harskamp R.E., Alexander J.H., Ferguson Jr. T.B., Hager R., Mack M.J., Englum B., Lopes R.D. Frequency and predictors of internal mammary artery graft failure and subsequent clinical outcomes: insights from the Project of Ex-vivo Vein Graft Engineering via Transfection (PREVENT) IV trial. Circulation. 2016; 133 (2): 131–8. DOI: 10.1161/CIRCULATIONAHA.115.015549
  37. Taggart D.P., Benedetto U., Gerry S., Altman D.G., Gray A.M., Lees B., Flather M. Bilateral versus single internal-thoracic-artery grafts at 10 years. N. Engl. J. Med. 2019; 380 (5): 437–46. DOI: 10.1056/NEJMoa1808783
  38. Wadey K., Lopes J., Bendeck M., George S. Muscle cells in coronary artery bypass grafting failure. Cardiovasc. Res. 2018; 114 (4): 601–10. DOI: 10.1093/cvr/cvy021
  39. Pellicano M., De Bruyne B., Toth G.G., Casselman F., Wijns W., Barbato E. Fractional flow reserve to guide and to assess coronary artery bypass grafting. Eur. Heart J. 2017; 38 (25): 1959–68. DOI: 10.1093/eurheartj/ehw505
  40. Dyllus A.T. N-terminales pro-brain-natriuretisches peptid zur risikostratifizierung bei patienten mit koronararterieller bypassoperation und hochgradig eingeschränkter linksventrikulärer function. Lübeck; 2014. https://www.zhb.uni-luebeck.de/epubs/ediss1576.pdf (accessed 10.12.2021)
  41. Calafiore A.M., Di Giammarco G., Teodori G., Di Mauro M., IacoIacò A.L., Bivona A., Vitolla G. Late results of first myocardial revascularization in multiple vessel disease: single versus bilateral internal mammary artery with or without saphenous vein grafts. Eur. J. Cardio-Thorac. Surg. 2004; 26 (3): 542–8. DOI: 10.1016/j.ejcts.2004.05.028
  42. Pym J., Brown P., Pearson M., Parker J. Right gastroepiploic-to-coronary artery bypass. The first decade of use. Circulation. 1995; 92 (Suppl. II): II-45–9. DOI: 10.1161/01.CIR.92.9.45
  43. Grandjean G.J., Boonstra P.W., denHeyer P., Ebels T. Arterial revascularization with the right gastroepiploic artery and internal mammary arteries in 300 patients. J. Thorac. Cardiovasc. Surg. 1994; 107: 1309–15. DOI: 10.1016/S0022-5223(94)70052-4
  44. Acar C. Radial artery: clinical results. In: He G.W. (Eds) Arterial grafting for coronary artery bypass surgery. Springer, Berlin, Heidelberg; 2006: 165–70. DOI: 10.1007/3-540-30084-8_18
  45. Nottin R., Grinda J.M., Anidjar S., Folliquet T., Detroux M. Coronary bypass graft: an arterial conduitsparing procedure. J. Thorac. Cardiovasc. Surg. 1996; 112: 1223–30. DOI: 10.1016/s0022-5223(96)70135-6
  46. Lawrie G.M., Weilbacher D.E., Henry P.D. Endo-thelium-dependent relaxation in human saphenous-vein grafts – effects of preparation and clinicopathological correlations. J. Thorac. Cardiovasc. Surg. 1990; 100: 612–20. DOI: 10.1016/S0022-5223(19)35507-2
  47. DeBelder A., Salas E., Langford E., Marrinan M., Martin J.F. S-nitrosoglutathione inhibits coronary artery vein graft platelet activation in vivo. Eur. Heart J. 1996; 17 (Suppl.): 545. DOI: 10.1016/j.bbagen.2013.02.004
  48. Son Youn-Jung, Hyeon-Ju Lee. Association between persistent smoking after a diagnosis of heart failure and adverse health outcomes: a systematic review and metaanalysis. Tobacco Ind. Dis. 2020; 18. DOI: 10.18332/tid/116411
  49. Willeit P., Tschiderer L., Allara E., Reuber K., Seekircher L., Gao L.U. et al. PROG-IMT and the ProofATHERO Study Groups. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020; 142 (7): 621–42.
  50. Sacks F.M., Pfeffer M.A., Moye L.A., Rouleau J.L., Rutherford J.D., Cole T.G. et al. for the Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N. Engl. J. Med. 1996; 335: 1001–9. DOI: 10.1056/NEJM199610033351401
  51. Hattler B., Carr B.M., Messenger J., Spertus J., Ebrahimi R., Bishawi M. et al. Clinical and angiographic predictors of patient-reported angina 1 year after coronary artery bypass graft surgery. Circul. Cardiovasc. Qual. Outcom. 2019; 12 (4): e005119. DOI: 10.1161/CIRCOUTCOMES.118.005119
  52. Cable D.G., O’Brien T., Schaff H.V., Katusic Z.S., Pompili V.J. Adenoviral transfection of human saphenous veins with eNOS: gene therapy applied to coronary bypass conduits. Circulation. 1996; 94 (Suppl. I): I-295.
  53. Imagawa H., Taniguchi K., Takahashi T. Gene transfer with hemagglutinating virus of Japan-liposome into human saphenous vein graft; preventive way against vein graft disease. Circulation. 1996; 94 (Suppl. I): I-477.
****
  1. Pisov A.V., Pisov N.A., Skachkova O.A., Pisova N.V. Endothelial dysfunction as an early predictor of atherosclerosis. Medical Alphabet. 2020; 4 (35): 28–33 (in Russ.). DOI: 10.33667/2078-5631-2019-4-35(410)-28-33
  2. Brel N.K., Kokov A.N., Gruzdeva O.V. Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obes. Metab. 2019; 15 (4): 3–8. DOI: 10.14341/omet9510
  3. Sokolova N.Yu., Golukhova E.Z. Myocardial revascularization in patients with stable coronary artery disease: the stratification of perioperative and long-term risks. Creative Cardiology. 2016; 10 (1): 25–36 (in Russ.). DOI: 10.15275/kreatkard.2016.01.03
  4. Golubev E.P., Kambarov S.Yu., Merzlyakov V.Yu. Features of the clinical course of coronary heart disease in young patients planning for myocardial revascularization. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2009; 10 (S1): 264–71 (in Russ.).
  5. Nowicki M., Buczkowski P., Miskowiak B., Konwerska A., Ostalska-Nowicka D., Dyszkiewicz W. Immunocytochemical study on endothelial integrity of saphenous vein grafts harvested by minimally invasive surgery with the use of vascular mayo stripers. A randomized controlled trial. Eur. J. Vasc. Endovasc. Surg. 2004; 27 (3): 244–50. DOI: 10.1016/j.ejvs.2003.12.023
  6. Neumann F.-J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019; 40 (2): 87–165. DOI: 10.1093/eurheartj/ehy394
  7. Tian M., Wang X., Sun H., Feng W., Song Y., Lu F., Hu S. No-touch versus conventional vein harvesting techniques at 12 months after coronary artery bypass grafting surgery: multicenter randomized, controlled trial. Circulation. 2021; 144 (14): 1120–9. DOI: 10.1161/CIRCULATIONAHA.121.055525
  8. Ta¸soˇglu . I., Turak O., Nazli Y., Özcan F., Colak N., Sahin S. et al. Preoperative neutrophil-lymphocyte ratio and saphenous vein graft patency after coronary artery bypass grafting. Clin. Appl. Thromb. Hemost. 2014; 20 (8): 819–24. DOI: 10.1177/1076029613484086
  9. Nowicki M., Perek B. Histological analysis in graft disease. In: Coronary graft failure. Springer, Cham; 2016: 219–25. DOI: 10.1007/978-3-319-26515-5_21
  10. Nowicki M., Misterski M., Malinska A., Perek B., Ostalska-Nowicka D., Jemielity M., Zabel M. Endothelial integrity of radial artery grafts harvested by minimally invasive surgery – immunohistochemical studies of CD31 and endothelial nitric oxide synthase expressions: a randomized controlled trial. Eur. J. CardioThorac. Surg. 2011; 39 (4): 471–7. DOI: 10.1016/j.ejcts.2010.08.005
  11. Fan Dong Li, Sexton K.W., Hocking K.M., Osgood M.J., Eagle S., Cheung-Flynn J. et al. Intimal thickness associated with endothelial dysfunction in human vein grafts. J. Surg. Res. 2013; 180 (1): e55–e62. DOI: 10.1016/j.jss.2012.06.017
  12. Wadey K., Lopes J., Bendeck M., George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc. Res. 2018; 114 (4): 601–10. DOI: 10.1093/cvr/cvy021
  13. Caliskan E., De Souza D.R., Böning A., Liakopoulos O.J., Choi Y.H., Pepper J., Emmert M.Y. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat. Rev. Cardiol. 2020; 17 (3): 155–69. DOI: 10.1038/s41569-019-0249-3
  14. Thakar R.G., Cheng Q., Patel S., Chu J., Nasir M., Liepmann D., Li S. Cell-shape regulation of smooth muscle cell proliferation. Biophysic. J. 2009; 96 (8): 3423–32. DOI: 10.1016/j.bpj.2008.11.074
  15. Kraler S., Libby P., Evans P.C., Akhmedov A., Schmiady M.O., Reinehr M. et al. Resilience of the internal mammary artery to atherogenesis: shifting from risk to resistance to address unmet needs. Arterioscl. Thromb. Vasc. Biol. 2021; 41: 2237–51. DOI: 10.1161/ATVBAHA.121.316256
  16. Poduri A., Rateri D.L., Howatt D.A., Balakrishnan A., Moorleghen J.J., Cassis L.A., Daugherty A. Fibroblast angiotensin II type 1a receptors contribute to angiotensin II – induced medial hyperplasia in the ascending aorta. Arterioscl. Thromb. Vasc. Biol. 2015; 35 (9): 1995–2002. DOI: 10.1161/ATVBAHA.115.305995
  17. Ham O., Lee S.Y., Song B.W., Lee C.Y., Lee J., Seo H.H. et al. Small molecule-mediated induction of miR-9 suppressed vascular smooth muscle cell proliferation and neointima formation after balloon injury. Oncotarget. 2017; 8 (55): 93360–72. DOI: 10.18632/oncotarget.21382
  18. Grus T., Grusova G., Lambert L., Banerjee R., Matìcha J., Mlìek M. The influence of the anastomosis angle on the hemodynamics in the distal anastomosis in the infrainguinal bypass: an in vitro study. Physiol. Res. 2016; 65 (4): 591. DOI: 10.33549/physiolres.933176
  19. Sur S., Sugimoto J.T., Agrawal D.K. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can. J. Physiol. Pharmacol. 2014; 92 (7): 531–45. DOI: 10.1139/cjpp-2013-0445
  20. Cristian G., Vintila A.M., Ionita-Radu F., Hantulie I., Ioan A.M., Savoiu D., Sava N. Mechanisms of venous graft failure. In: Coronary graft failure. Springer, Cham. 2016: 267–76. DOI: 10.1007/978-3-319-26515-5_24
  21. Вечерский Ю.Ю., Манвелян Д.В., Затолокин В.В., Шипулин В.М. Венозные кондуиты в коронарной хирургии: старые проблемы – новые решения. Сибирский журнал клинической и экспериментальной медицины. 2019; 34 (1): 24–32. DOI: 10.29001/2073- 8552-2019-34-1-24-32 Vechersky Yu.Yu., Manvelyan D.V., Zatolokin V.V., Shipulin V.M. Venous conduits in coronary surgery: old problems – new solutions. Siberian Journal of Clinical and Experimental Medicine. 2019; 34 (1): 24–32. DOI: 10.29001/2073-8552-2019-34-1-24-32
  22. Woodward L.C., Antoniades C., Taggart D.P. Intraoperative vein graft preservation: what is the solution? Ann. Thorac. Surg. 2016; 102 (5): 1736–46. DOI: 10.1016/j.athoracsur.2016.05.097
  23. Xiao L., Luo G., Guo X., Jiang C., Zeng H., Zhou F., Yao P. Macrophage iron retention aggravates atherosclerosis: evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim. Biophys. Acta (BBA) Molec. Cell Biol. Lip. 2020; 1865 (2): 158531. DOI: 10.1016/j.bbalip.2019.158531
  24. Winkler B., Reineke D., Heinisch P.P., Schönhoff F., Huber C., Kadner A., Carrel T. Graft preservation solutions in cardiovascular surgery. Interact. Cardiovasc. Thorac. Surg. 2016; 23 (2): 300–9. DOI: 10.1093/icvts/ivw056
  25. Weglarz P., Bochenek T., Bajor G., Mizia-Stec K., Krejca M., Trusz-Gluza M. Early stage of atherosclerosis in aortocoronary saphenous vein grafts: intravascular ultrasound study. Brazil. J. Cardiovasc. Surg. 2019; 34: 560–4. DOI: 10.21470/1678-9741-2018-0221 26. Li X., Zhao H. Mechanical and degradation properties of small-diameter vascular grafts in an in vitro biomimetic environment. J. Biomat. Applic. 2019; 33 (8): 1017–34. DOI: 10.1177%2F0885328218820751
  26. Seo J., Ramachandra A.B., Boyd J., Marsden A.L., Kahn A.M. Computational evaluation of venous graft geometries in coronary artery bypass surgery. Semin. Thorac. Cardiovasc. Surg. 2021; 34 (2): 521–32. DOI: 10.1053/j.semtcvs.2021.03.007
  27. Yilmaz M.B., Guray U., Guray Y., Biyikoglu S.F., Tandogan I., Sasmaz H., Korkmaz S. Metabolic syndrome negatively impacts early patency of saphenous vein grafts. Coron. Art. Dis. 2006; 17 (1): 41–4. DOI: 10.1016/j.thromres.2006.07.004
  28. Van Diepen S., Fuster V., Verma S., Hamza T.H., Siami F.S., Goodman S.G., Farkouh M.E. Dual antiplatelet therapy versus aspirin monotherapy in diabetics with multivessel disease undergoing CABG: FREEDOM 118 Reviews Clinical Physiology of Circulation. 2022; 19 (2). DOI: 10.24022/1814-6910-2022-19-2-109-118 insights. J. Am. Coll. Cardiol. 2017; 69 (2): 119–27. DOI: 10.1016/j.jacc.2016.10.043
  29. Harskamp R.E., Alexander J.H., Schulte P.J., Brophy C.M., Mack M.J., Peterson E.D., Lopes R.D. Vein graft preservation solutions, patency, and outcomes after coronary artery bypass graft surgery: follow-up from the PREVENT IV randomized clinical trial. JAMA Surg. 2014; 149 (8): 798–805. DOI: 10.1001/jama.294.19.2446
  30. Kockx M.M., DeMeyer G.R.Y., Bortier H., deMeyere N., Muhring J., Bakker A. et al. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation. 1996; 94: 1255–62. DOI: 10.1161/01.cir.94.6.1255
  31. Oezkur M., Gorski A., Peltz J., Wagner M., Lazariotou M., Schimmer C., Leyh R.G. Preoperative serum h-FABP concentration is associated with postoperative incidence of acute kidney injury in patients undergoing cardiac surgery. BMC Cardiovasc. Disord. 2014; 14 (1): 1–6. DOI: 10.1186/1471-2261-14-117
  32. Ijaz M., Wang F., Shahbaz M., Jiang W., Fathy A.H., Nesa E.U. The role of Grb2 in cancer and peptides as Grb2 antagonists. Prot. Pept. Lett. 2017; 24 (12): 1084–95. DOI: 10.2174/0929866525666171123213148
  33. Wilbring M., Tugtekin S.M., Zatschler B., Ebner A., Reichenspurner H., Matschke K., Deussen A. Even short-time storage in physiological saline solution impairs endothelial vascular function of saphenous vein grafts. Eur. J. Cardio-Thorac. Surg. 2011; 40 (4): 811–5. DOI: 10.1016/j.ejcts.2011.01.024
  34. Bouhout I., Ali W.B., Perrault L.P. The effect of storage solutions on endothelial function and saphenous vein graft patency. Ind. J. Thorac. Cardiovasc. Surg. 2018; 34 (3): 258–65. DOI: 10.1007/s12055-018-0720-5
  35. Bakaeen F.G., Blackstone E.H., Pettersson G.B., Gillinov A.M., Svensson L.G. The father of coronary artery bypass grafting: René Favaloro and the 50th anniversary of coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2018; 155 (6): 2324–8. DOI: 10.1016/j.jtcvs.2017.09.167
  36. Harskamp R.E., Alexander J.H., Ferguson Jr. T.B., Hager R., Mack M.J., Englum B., Lopes R.D. Frequency and predictors of internal mammary artery graft failure and subsequent clinical outcomes: insights from the Project of Ex-vivo Vein Graft Engineering via Transfection (PREVENT) IV trial. Circulation. 2016; 133 (2): 131–8. DOI: 10.1161/CIRCULATIONAHA.115.015549
  37. Taggart D.P., Benedetto U., Gerry S., Altman D.G., Gray A.M., Lees B., Flather M. Bilateral versus single internal-thoracic-artery grafts at 10 years. N. Engl. J. Med. 2019; 380 (5): 437–46. DOI: 10.1056/NEJMoa1808783
  38. Wadey K., Lopes J., Bendeck M., George S. Muscle cells in coronary artery bypass grafting failure. Cardiovasc. Res. 2018; 114 (4): 601–10. DOI: 10.1093/cvr/cvy021
  39. Pellicano M., De Bruyne B., Toth G.G., Casselman F., Wijns W., Barbato E. Fractional flow reserve to guide and to assess coronary artery bypass grafting. Eur. Heart J. 2017; 38 (25): 1959–68. DOI: 10.1093/eurheartj/ehw505
  40. Dyllus A.T. N-terminales pro-brain-natriuretisches peptid zur risikostratifizierung bei patienten mit koronararterieller bypassoperation und hochgradig eingeschränkter linksventrikulärer function. Lübeck; 2014. https://www.zhb.uni-luebeck.de/epubs/ediss1576.pdf (accessed 10.12.2021)
  41. Calafiore A.M., Di Giammarco G., Teodori G., Di Mauro M., IacoIacò A.L., Bivona A., Vitolla G. Late results of first myocardial revascularization in multiple vessel disease: single versus bilateral internal mammary artery with or without saphenous vein grafts. Eur. J. Cardio-Thorac. Surg. 2004; 26 (3): 542–8. DOI: 10.1016/j.ejcts.2004.05.028
  42. Pym J., Brown P., Pearson M., Parker J. Right gastroepiploic-to-coronary artery bypass. The first decade of use. Circulation. 1995; 92 (Suppl. II): II-45–9. DOI: 10.1161/01.CIR.92.9.45
  43. Grandjean G.J., Boonstra P.W., denHeyer P., Ebels T. Arterial revascularization with the right gastroepiploic artery and internal mammary arteries in 300 patients. J. Thorac. Cardiovasc. Surg. 1994; 107: 1309–15. DOI: 10.1016/S0022-5223(94)70052-4
  44. Acar C. Radial artery: clinical results. In: He G.W. (Eds) Arterial grafting for coronary artery bypass surgery. Springer, Berlin, Heidelberg; 2006: 165–70. DOI: 10.1007/3-540-30084-8_18
  45. Nottin R., Grinda J.M., Anidjar S., Folliquet T., Detroux M. Coronary bypass graft: an arterial conduitsparing procedure. J. Thorac. Cardiovasc. Surg. 1996; 112: 1223–30. DOI: 10.1016/s0022-5223(96)70135-6
  46. Lawrie G.M., Weilbacher D.E., Henry P.D. Endo-thelium-dependent relaxation in human saphenous-vein grafts – effects of preparation and clinicopathological correlations. J. Thorac. Cardiovasc. Surg. 1990; 100: 612–20. DOI: 10.1016/S0022-5223(19)35507-2
  47. DeBelder A., Salas E., Langford E., Marrinan M., Martin J.F. S-nitrosoglutathione inhibits coronary artery vein graft platelet activation in vivo. Eur. Heart J. 1996; 17 (Suppl.): 545. DOI: 10.1016/j.bbagen.2013.02.004
  48. Son Youn-Jung, Hyeon-Ju Lee. Association between persistent smoking after a diagnosis of heart failure and adverse health outcomes: a systematic review and metaanalysis. Tobacco Ind. Dis. 2020; 18. DOI: 10.18332/tid/116411
  49. Willeit P., Tschiderer L., Allara E., Reuber K., Seekircher L., Gao L.U. et al. PROG-IMT and the ProofATHERO Study Groups. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020; 142 (7): 621–42.
  50. Sacks F.M., Pfeffer M.A., Moye L.A., Rouleau J.L., Rutherford J.D., Cole T.G. et al. for the Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N. Engl. J. Med. 1996; 335: 1001–9. DOI: 10.1056/NEJM199610033351401
  51. Hattler B., Carr B.M., Messenger J., Spertus J., Ebrahimi R., Bishawi M. et al. Clinical and angiographic predictors of patient-reported angina 1 year after coronary artery bypass graft surgery. Circul. Cardiovasc. Qual. Outcom. 2019; 12 (4): e005119. DOI: 10.1161/CIRCOUTCOMES.118.005119
  52. Cable D.G., O’Brien T., Schaff H.V., Katusic Z.S., Pompili V.J. Adenoviral transfection of human saphenous veins with eNOS: gene therapy applied to coronary bypass conduits. Circulation. 1996; 94 (Suppl. I): I-295.
  53. Imagawa H., Taniguchi K., Takahashi T. Gene transfer with hemagglutinating virus of Japan-liposome into human saphenous vein graft; preventive way against vein graft disease. Circulation. 1996; 94 (Suppl. I): I-477.

Об авторах

  • Ирасханов Атаби Шайхаевич, ординатор; ORCID
  • Кокшенёва Инна Валериевна, д-р мед. наук, ст. науч. сотр.; ORCID
  • Идрисова Зарета Мусаевна, аспирант; ORCID
  • Ахмедов Мухаммаджон Бахромжон угли, аспирант; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A