Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Функциональная роль микровезикул в норме и при патологии

Авторы: С.В. Игнатьев, А.В. Лянгузов

Организация:
ФГБУН «Кировский научно-исследовательский институт гематологии и переливания крови Федерального медико-биологического агентства» (директор – доктор мед. наук И.В. Парамонов), ул. Красноармейская, 72, Киров, 610027, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-69102019-16-4-261-266

УДК: 576.3:616-091.811

Библиографическая ссылка: Клиническая физиология кровообращения. 2019; 16 (4): 261-266

Цитировать как: С.В. Игнатьев, А.В. Лянгузов . Функциональная роль микровезикул в норме и при патологии . Клиническая физиология кровообращения. 2019; 16 (4): 261-266. DOI: 10.24022/1814-69102019-16-4-261-266

Ключевые слова: микровезикулы, гемостаз, естественные коагулянты, фибринолиз, тромбоз, кровотечения

Поступила / Принята к печати:  27.09.2019/14.10.2019

Скачать (Download)
Полнотекстовая версия:  

Аннотация

Микровезикулы являются одним из видов внеклеточных везикул, которые высвобождаются клетками и обнаруживаются во всех биологических жидкостях и тканях человека. Микровезикулы могут включать РНК, свободные жирные кислоты, поверхностные рецепторы и белки, тем самым обеспечивая клеточный и тканевой гомеостаз. В то же время они участвуют в патогенезе некоторых тяжелых нарушений, таких как кровотечения и тромбозы. В настоящем обзоре представлен анализ данных литературы о механизмах формирования микровезикул, их составе и патогенетической роли в развитии заболеваний и осложнений как тромботического, так и геморрагического характера, а также о возможности использования микровезикуляции в клинической практике.

Литература

  1. Hoffman M., Monroe D.M. A cell-based model of hemostasis. Thromb. Haemost. 2001; 85: 958–65. DOI: 10.1055/s-0037-1615947
  2. Wolf P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967; 13 (3): 269–88. DOI: 10.1111/j.1365-2141.1967.tb08741.x
  3. Lopez-Verrilli М.А., Court F.A. Exosomes: mediators of communication in eukaryotes. Biol. Res. 2013; 46: 5–11. DOI: 10.4067/S0716-97602013000100001
  4. Melki I., Tessandier N., Zufferey A., Boilard E. Platelet microvesicles in health and disease. Platelets. 2017; 19: 1–8. DOI: 10.1080/09537104.2016.1265924
  5. Herring J.M., McMichael M.A., Smith S.A. Microparticles in health and disease. J. Vet. Intern. Med. 2013; 27: 1020–33. DOI: 10.1111/jvim.12128
  6. Пантелеев М.А., Абаева А.А., Нечипуренко Д.Ю., Обыденный С.И., Свешникова А.Н., Шибеко А.М. Физиология и патология внеклеточных везикул. Онкогематология. 2017; 12 (1): 62–70. DOI: 10.17650/ 1818-8346-2017-12-1-62-70 [Panteleev M.A., Abaeva A.A., Nechipurenko D.Yu., Obydenniy S.I., Sveshnikova A.N., Shibeko A.M. Physiology and pathology of extracellular vesicules. Oncohematology. 2017; 12 (1): 62–70. (in Russ.). DOI: 10.17650/1818-8346-2017-12-1-62-70 ]
  7. Hugel B., Martínez M.C., Kunzelmann C., Freyssinet J.M. Membrane microparticles: two sides of the coin. Physiology (Bethesda). 2005; 20: 22–7. DOI: 10.1152/ physiol.00029.2004
  8. Whitehead C.A., Luwor R.B., Morokoff A.P., Kaye A.H., Stylli S.S. Cancer exosomes in cerebrospinal fluid. Transl. Cancer Res.2017; 6 (8): 1352–70. DOI: 10.21037/ tcr.2017.08.31
  9. Cocucci E., Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell. Biol. 2015; 25: 364–72. DOI: 10.1016/ j.tcb.2015.01.004
  10. Schindler S.M., Little J.P., Klegeris A. Microparticles: a new perspective in central nervous system disorders. Biomed. Res. Int. 2014; 2014: 756327. DOI: 10.1155/ 2014/756327
  11. Arraud N., Linares R., Tan S., Gounou C., Pasquet J.-M., Mornet S. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 2014; 12: 614–27. DOI: 10.1111/jth.12554
  12. Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L., Ahn Y.S. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 2003; 109 (4): 175–80. DOI: 10.1016/s0049-3848(03)00064-1
  13. Leroyer A.S., Anfosso F., Lacroix R., Sabatier F., Simoncini S., Njock S. et al. Endothelial-derived microparticles: biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb. Haemost. 2010; 104 (3): 456–63. DOI: 10.1160/th10-02-0111
  14. ara M., Guidetti G.F., Camera M., Canobbio I., Amadio P., Torti M. et al. Biology and role of extracellular vesicles (EVs) in the pathogenesis of thrombosis. Int. J. Mol. Sci. 2019; 20 (11): 2840. DOI: 10.3390/ ijms20112840
  15. Tetta C., Bruno S., Fonsato V., Deregibus M.C., Camussi G. The role of microvesicles in tissue repair. Organogenesis. 2011; 7 (2): 105–15. DOI: 10.4161/org. 7.2.15782
  16. Muralidharan-Chari V., Sedgwick A., D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell. Science. 2010; 123: 1603–11. DOI: 10.1242/jcs.064386
  17. Manno S., Takakuwa Y., Mohandas N. Identification of a functional role for lipid asymmetry in biological membranes: phosphatidylserine-skeletal protein interactions modulate membrane stability. PNAS. 2002; 99 (4): 1943–8. DOI: 10.1073/pnas.042688399
  18. Daleke D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid. Res. 2003; 44 (2): 233–42. DOI: 10.1194/jlr.R200019-JLR200
  19. Набиуллина Р.М. Механизмы влияния микровезикул крови на формирование, структуру и устойчивость фибринового сгустка: Автореф. дис. ... канд. мед. наук. Казань; 2015. [Nabiullina R.M. The mechanism of the influence of blood microvesicles on the general, stability and resistance of a fibrin clot. Сand. Med. Sc. Thesises of Diss. Kazan; 2015 (in Russ.).]
  20. Morel O., Jesel L., Freyssinet J.M., Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler. Thromb. Vasc. Biol. 2011; 31 (1): 15–26. DOI: 10.1161/ATVBAHA.109.200956
  21. Гомзикова М.О., Гайфуллина Р.Ф., Мустафин И.Г., Чернов В.М., Мифтахова З.Р., Галявич А.С., Ризванов А.А. Мембранные микровезикулы: биологические свойства и участие в патогенезе заболеваний. Клеточная трансплантология и тканевая инженерия. 2013; 8 (1): 6–11. [Gomzikova M.O., Gayfullina R.F., Mustafin I.G., Chernov V.M., Miftakhova Z.R., Galyavich A.S., Rizvanov A.A. Membrane microvesicles: biological properties and involvement in pathogenesis of diseases. Cellular Transplantation and Tissue Engineering. 2013; 8 (1): 6–11 (in Russ.).]
  22. Undas A., Brozek J., Jankowski M., Siudak Z., Szczeklik A., Jakubowski H. Plasma homocysteine affects fibrin clot permeability and resistance to lysis in human subjects. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1397–404. DOI: 10.1161/01.ATV.0000219688.43572.75
  23.  Van Der Meijden P.E., Van Schilfgaarde M., Van Oerle R., RennéT., Ten Cate H., Spronk H.M.H. Plateletand erythrocyte-derived microparticles trigger thrombingeneration via factor XIIa. J. Thromb. Haemost. 2012; 10: 1355–62. DOI: 10.1111/j.1538-7836.2012.04758.x
  24. Suades R., Padro T., Vilahur G., Badimon L. Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thromb. Haemost. 2012; 108: 1208–19. DOI: 10.1160/ TH12-07-0486
  25. Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.А., Krymskaya O.V. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 2007; 97: 425–34. DOI: 10.1160/ TH06-06-0313
  26. Goubran H.A., Burnouf T., Stakiw J., Seghatchian J. Platelet microparticle: a sensitive physiological “fine tuning” balancing factor in health and disease. Transfus. Apher. Sci. 2015; 52: 12–8. DOI: 10.1016/j.transci. 2014.12.015
  27. Nomura S., Shimizu M. Clinical significance of procoagulant microparticles. J. Intensive Care. 2015; 3 (1): 11. DOI: 10.1186/s40560-014-0066-z
  28. Steppich B., Mattisek C., Sobczyk D., Kastrati A., Schömig A., Ott I. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb. Haemost. 2005; 93: 35–9. DOI: 10.1160/ TH04-06-0393
  29. Tans G. Comparison of anticoagulants and procoagulant activities of stimulated platelets and plateletderived microparticles. Blood. 1991; 77: 2641–8.
  30. Lacroix R., Plawinski L., Robert S., Doeuvre L., Sabatier F., Martinez de Lizarrondo S. et al. Leukocyteand endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica. 2012; 97 (12): 1864–72. DOI: 10.3324/haematol.2012. 066167
  31. Сухарева Е.Г. Влияние эритроцитарных микровезикул на гемостаз в норме и при патологии (на модели термической травмы): Дис. … канд. биол. наук. М.; 2016. [Sukhareva E.G. The effect of erythrocyte microvesicles on hemostasis in normal and pathological conditions (on the model of thermal injury). Cand. Biol. Sc. Diss. Moscow; 2016 (in Russ.).]
  32. Litwińska Z., Łuczkowska K., Machaliński B. Extracellular vesicles in hematological malignancies. Leukemia & Lymphoma. 2018; 60 (1): 29–36 DOI: 10.1080/ 10428194.2018.1459606
  33. Ma G., Liu F., Lv L., Gao Y., Su Y. Increased promyelocytic-derived microparticles: a novel potential factor for coagulopathy in acute promyelocytic leukemia. Ann. Hematol. 2013; 92: 645–52. DOI: 10.1007/s00277-0131676-6
  34. Navarro-Tableros V., Gomez Y., Camussi G., Brizzi M.F. Extracellular vesicles: new players in lymphomas. Int. J. Mol. Sci. 2019; 20: 41. DOI: 10.3390/ ijms 20010041
  35. Игнатьев С.В., Зотина Е.Н., Фокина Е.С., Лянгузов А.В., Лагунова О.Р., Ивашкина Е.П. Прокоагулянтный статус у больных неходжкинскими лимфомами. Тромбоз, гемостаз и реология. 2018; 3 (75): 35–40. DOI: 10.25555/THR.2018.3.0849 [Ignatyev S.V., Zotina Е.N., Fokina Е.S., Lyanguzov A.V., Lagunova O.R., Ivashkina E.P. Procoagulantive state in patient with non-Hodgkin’s lymphomas. Tromboz, Gemostaz i Reologia. 2018; 3 (75): 35–40 (in Russ.). DOI: 10.25555/THR. 2018.3.0849 ]
  36. Campello E., Radu C.M., Duner E., Lombardi A.M., Spiezia L., Bendo R. et al. Activated platelet-derived and leukocyte-derived circulating microparticles and the risk of thrombosis in heparin-induced thrombocytopenia: a role for PF4-bearing microparticles? Cytom. B. Clin. Cytom. 2018; 94: 334–41. DOI: 10.1002/cyto. b.21507
  37. Gross P.L., Vaezzadeh N. Tissue factor microparticles and haemophilia. Thromb. Res. 2010; 125: 67–9.

Об авторах

  • Игнатьев Сергей Викторович, канд. мед. наук, ст. науч. сотр.; orcid.org/0000-0002-8457-2967
  • Лянгузов Алексей Владимирович, канд. мед. наук, ст. науч. сотр.; orcid.org/0000-0001-5509-5308


 Если вы заметили опечатку, выделите текст и нажмите Alt+A