Научно-практический журнал
«Клиническая физиология кровообращения»

Главный редактор

Лео Антонович Бокерия, доктор медицинских наук, профессор, академик РАН и РАМН, президент ФГБУ «НМИЦ ССХ им. А.Н. Бакулева» МЗ РФ


Гипоксия и дефицит железа: синергичные эффекты на организм

Авторы: Купряшов А.А., Ривняк М.И.

Организация:
ФГБУ «Национальный медицинский исследовательский центр сердечно-сосудистой хирургии им. А.Н. Бакулева» Минздрава России, Москва, Российская Федерация

Для корреспонденции: Сведения доступны для зарегистрированных пользователей.

Раздел: Обзоры

DOI: https://doi.org/10.24022/1814-6910-2022-19-1-57-69

УДК: 616.155.194.8

Библиографическая ссылка: Клиническая физиология кровообращения. 2022; 1 (19): 57-69

Цитировать как: Купряшов А.А., Ривняк М.И. . Гипоксия и дефицит железа: синергичные эффекты на организм. Клиническая физиология кровообращения. 2022; 1 (19): 57-69. DOI: 10.24022/1814-6910-2022-19-1-57-69

Ключевые слова: хроническая сердечная недостаточность, дефицит железа, белки, содержащие железо

Поступила / Принята к печати:  24.11.2021 / 17.01.2022

Полнотекстовая версия:
Оформить подписку 🔒

Аннотация

В настоящее время идет накопление данных о роли метаболизма железа в условиях гипоксии. Важнейшая роль железа определяется функциями белков, которые содержат этот металл в своей структуре. За последние годы произошел значительный прогресс в понимании основных звеньев регуляции метаболизма железа, в функции таких белков, как ферропортин, переносчик двухвалентных металлов 1, цитохром В, железорегуляторные белки, железочувствительные элементы, гепсидин. Особое внимание уделено гепсидину, который признан ключевым железорегуляторным белком, влияющим как на абсорбцию пищевого железа, так и на высвобождение железа из макрофагов при его рециркуляции из стареющих эритроцитов. В обзоре представлены данные о взаимосвязи гепсидина с другими железорегуляторными протеинами и влиянии гипоксией индуцированного фактора на метаболизм железа. Проведены систематизация и анализ литературных данных для определения основных направлений дальнейших исследований и целенаправленного поиска путей повышения качества лечения больных с хронической сердечной недостаточностью на фоне дефицита железа.

Литература

  1. McMurray J.J., Adamopoulos S., Anker S.D., Auricchio A., Böhm M., Dickstein K. et al. ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2012; 33 (14): 1787–847. DOI: 10.1093/eurheartj/ehs104
  2. Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S. et al. ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016; 37 (27): 2129–200. DOI: 10.1093/eurheartj/ehw128
  3. Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E. Jr, Colvin M.M. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017; 70 (6): 776–803. DOI: 10.1161/CIR.0000000000000509
  4. Jankowska E.A., von Haehling S., Anker S.D., Macdougall I.C., Ponikowski P. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur. Heart J. 2013; 34 (11): 816–29. DOI: 10.1093/eurheartj/ehs224
  5. Bakogiannis C., Briasoulis A., Mouselimis D., Tsarouchas A., Papageorgiou N., Papadopoulos C. Iron deficiency as therapeutic target in heart failure: a translational approach. Heart Fail. Rev. 2020; 25 (2): 173–82. DOI: 10.1007/s10741-019-09815-z
  6. Von Haehling S., Gremmler U., Krumm M., Mibach F., Schön N., Taggeselle J. et al. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: The PrEP Registry. Clin. Res. Cardiol. 2017; 106 (6): 436–43. DOI: 10.1007/s00392-016-1073-y
  7. Aisen P., Enns C., Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell. Biol. 200; 33 (10): 940–59. DOI: 10.1016/s1357- 2725(01)00063-2
  8. Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014; 19 (2): 164–74. PMID: 24778671
  9. Puig S., Ramos-Alonso L., Romero A.M., MartínezPastor M.T. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017; 9 (11): 1483–500. DOI: 10.1039/c7mt00116a
  10. Rockfield S., Chhabra R., Robertson M., Rehman N., Bisht R., Nanjundan M. Links between iron and lipids: implications in some major human diseases. Pharmaceuticals (Basel). 2018; 11 (4): 113. DOI: 10.3390/ph11040113
  11. Mole D.R. Iron homeostasis and its interaction with prolyl hydroxylases. Antioxid. Redox. Signal. 2010; 12 (4): 445–58. DOI: 10.1089/ars.2009.2790
  12. Balla J., Balla G., Lakatos B., Jeney V., Szentmihályi K. A hemvas az emberi szervezetben [Heme-iron in the human body]. Orv. Hetil. 2007; 148 (36): 1699–706 (Hungarian). DOI: 10.1556/oh.2007.28156 13. Barras F. Iron-sulfur proteins: structure, function and biogenesis. eLS, John Wiley & Sons. Ltd.; 2017. DOI: 10.1002/9780470015902.a0001377
  13. Poulos T.L. Structural and functional diversity in heme monooxygenases. Drug. Metab. Dispos. 2005; 33 (1): 10–8. DOI: 10.1124/dmd.104.002071
  14. Millett E.S., Efimov I., Basran J., Handa S., Mowat C.G., Raven E.L. Heme-containing dioxygenases involved in tryptophan oxidation. Curr. Opin. Chem. Biol. 2012; 16 (1–2): 60–6. DOI: 10.1016/j.cbpa.2012.01.014
  15. He C., Mishina Y. Modeling non-heme iron proteins. Curr. Opin. Chem. Biol. 2004; 8 (2): 201–8. DOI: 10.1016/j.cbpa.2004.02.002
  16. Dong L.B., Liu Y.C., Cepeda A.J., Kalkreuter E., Deng M.R., Rudolf J.D. et al. Characterization and crystal structure of a nonheme diiron monooxygenase involved in platensimycin and platencin biosynthesis. J. Am. Chem. Soc. 2019; 141 (31): 12406–12. DOI: 10.1021/jacs.9b06183
  17. Bruijnincx P.C., van Koten G., Klein Gebbink R.J. Mononuclear non-heme iron enzymes with the 2-His1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chem. Soc. Rev. 2008; 37 (12): 2716–44. DOI: 10.1039/b707179p
  18. Rouault T.A. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell. Biol. 2015; 16 (1): 45–55. DOI: 10.1038/nrm3909
  19. Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic. Biol. Med. 2019; 133: 234–7. DOI: 10.1016/j.freeradbiomed.2018.08.010
  20. Wofford J.D., Chakrabarti M., Lindahl P.A. Mössbauer spectra of mouse hearts reveal age-dependent changes in mitochondrial and ferritin iron levels. J. Biol. Chem. 2017; 2292 (13): 5546–54. DOI: 10.1074/jbc.M117. 777201
  21. Sangkhae V., Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv. Nutr. 2017; 8 (1): 126–36. DOI: 10.3945/an.116.013961
  22. Donovan A., Lima C.A., Pinkus J.L., Pinkus G.S., Zon L.I., Robine S. et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell. Metab. 2005; 1: 191–200. DOI: 10.1016/j.cmet.2005.01.003
  23. Muckenthaler M.U., Galy B., Hentze M.W. Systemic iron homeostasis and the iron-responsive element/ironregulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 2008; 28: 197–213. DOI: 10.1146/annurev.nutr.28.061807.155521
  24. Peyssonnaux C., Nizet V., Johnson R.S. Role of the hypoxia inducible factors HIF in iron metabolism. Cell. Cycle. 2008; 7 (1): 28–32. DOI: 10.4161/cc.7.1.5145
  25. Nemeth E., Tuttle M.S., Powelson J., Vaughn M.B., Donovan A., Ward D.M. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306: 2090–3. DOI: 10.1126/science.1104742
  26. Pandur E., Sipos K., Grama L., Nagy J., Poór V.S., Sétáló G. et al. Prohepcidin binds to the HAMP promoter and autoregulates its own expression. Biochem. J. 2013; 451 (2): 301–11. DOI: 10.1042/BJ20121466
  27. Pigeon C., Ilyin G., Courselaud B., Leroyer P., Turlin B., Brissot P. et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 2001; 276: 7811–9. DOI: 10.1074/jbc. M008923200
  28. Park C.H., Valore E.V., Waring A.J., Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001; 276: 7806–10. DOI: 10.1074/jbc. M008922200
  29. Qiao B., Sugianto P., Fung E., Del-Castillo-Rueda A., Moran-Jimenez M.J., Ganz T. et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell. Metab. 2012; 15 (6): 918–24. DOI: 10.1016/j.cmet.2012.03.018
  30. Ganz T., Nemeth E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta. 2012; 1823 (9): 1434–43. DOI: 10.1016/j.bbamcr.2012.01.014
  31. Piperno A., Galimberti S., Mariani R., Pelucchi S., Ravasi G., Lombardi C. et al. Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the highcare project. Blood. 2010; 117: 2953–9. DOI: 10.1182/blood-2010- 08-299859
  32. Nemeth E., Rivera S., Gabayan V., Keller C., Taudorf S., Pedersen B.K. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 2004; 113: 1271–6. DOI: 10.1172/JCI20945
  33. Smith C.L., Arvedson T.L., Cooke K.S., Dickmann L.J., Forte C., Li H. et al. IL-22 regulates iron availability in vivo through the induction of hepcidin. J. Immunol. 2013; 191: 1845–55. DOI: 10.4049/jimmunol.1202716
  34. Shah Y.M., Xie L. Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterology. 2014; 146 (3): 630–42. DOI: 10.1053/j.gastro.2013.12.031
  35. Semenza G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 2014; 9: 47–71. DOI: 10.1146/annurev-pathol-012513- 104720
  36. Kautz L., Meynard D., Monnier A., Darnaud V., Bouvet R., Wang R.H. et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008; 112 (4): 1503–9. DOI: 10.1182/blood-2008-03-143354
  37. Babitt J.L., Huang F.W., Wrighting D.M., Xia Y., Sidis Y., Samad T.A. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006; 38 (5): 531–9. DOI: 10.1038/ng1777
  38. Silvestri L., Pagani A., Nai A., De Domenico I., Kaplan J., Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell. Metab. 2008; 8 (6): 502–11. DOI: 10.1016/j.cmet.2008.09.012
  39. Wrighting D.M., Andrews N.C. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006; 108: 3204–9. DOI: 10.1182/blood-2006-06-027631
  40. Kautz L., Jung G., Valore E.V., Rivella S., Nemeth E., Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014; 46 (7): 678–84. DOI: 10.1038/ng.2996
  41. Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis – an update. Front. Pharmacol. 2014; 5: 124. DOI: 10.3389/fphar.2014.00124
  42. Kühn L.C. Iron regulatory proteins and their role in controlling iron metabolism. Metallomics. 2015; 7 (2): 232–43. DOI: 10.1039/c4mt00164h
  43. Keene J.D., Tenenbaum S.A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell. 2002; 9 (6): 1161–7. DOI: 10.1016/s1097-2765(02)00559-2
  44. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148 (3): 399–408. DOI: 10.1016/j.cell.2012.01.021
  45. Hirota K. An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic. Biol. Med. 2019; 133: 118–29. DOI: 10.1016/j.freeradbiomed. 2018.07.018
  46. Nandal A., Ruiz J.C., Subramanian P., Ghimire-Rijal S., Sinnamon R.A., Stemmler T.L. et al. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 2011; 14 (5): 647–57. DOI: 10.1016/j.cmet.2011.08.015
  47. Sanchez M., Galy B., Muckenthaler M.U., Hentze M.W. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat. Struct. Mol. Biol. 2007; 14 (5): 420–6. DOI: 10.1038/nsmb1222
  48. Mastrogiannaki M., Matak P., Keith B., Simon M.C., Vaulont S., Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 2009; 119 (5): 1159–66. DOI: 10.1172/JCI38499
  49. Schwartz A.J., Das N.K., Ramakrishnan S.K., Jain C., Jurkovic M.T., Wu J. et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J. Clin. Invest. 2019; 129 (1): 336–48. DOI: 10.1172/JCI122359
  50. Jourdanet D. Influence de la pression de l'air sur la vie de l'homme: climats d'altitude et climats de montagne. Paris: G. Masson; 1875.
  51. Miyake T., Kung C.K., Goldwasser E. Purification of human erythropoietin. J. Biol. Chem. 1977; 252: 5558–64. DOI: 10.1016/S0021-9258(19)63387-9
  52. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 1992; 12: 5447–54. DOI: 10.1128/mcb.12.12.5447-5454.1992
  53. Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O'Rourke J., Mole D.R. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001; 107 (1): 43–54. DOI: 10.1016/s0092- 8674(01)00507-4
  54. Ivan M., Haberberger T., Gervasi D.C., Michelson K.S., Gunzler V., Kondo K. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA. 2002; 99 (21): 13459–64. DOI: 10.1073/pnas.192342099
  55. Loenarz C., Schofield C.J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol. 2008; 4: 152–6. DOI: 10.1038/nchembio0308-152
  56. Semenza G.L., Koury S.T., Nejfelt M.K., Gearhart J.D., Antonarakis S.E. Cell-type-specific and hypoxiainducible expression of the human erythropoietin gene in transgenic mice. Proc. Natl. Acad. Sci. USA. 1991; 88 (19): 8725–9. DOI: 10.1073/pnas.88.19.8725
  57. Simpson R.J. Effect of hypoxic exposure on iron absorption in heterozygous hypotransferrinaemic mice. Ann. Hematol. 1992; 65 (6): 260–4. DOI: 10.1007/BF01836070
  58. Barrett T.D., Palomino H.L., Brondstetter T.I., Kanelakis K.C., Wu X., Yan W. et al. Prolyl hydroxylase inhibition corrects functional iron deficiency and inflammation-induced anaemia in rats. Br. J. Pharmacol. 2015; 172 (16): 4078–88. DOI: 10.1111/bph.13188
  59. Semenza G.L. Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J. Clin. Investig. 2000; 106: 809–12. DOI: 10.1172/JCI11223
  60. Mukhopadhyay C.K., Mazumder B., Fox P.L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 2000; 275 (28): 21048–5. DOI: 10.1074/jbc.M000636200
  61. Lee P.J., Jiang B.H., Chin B.Y., Iyer N.V., Alam J., Semenza G.L. et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 1997; 272 (9): 5375–81. DOI: 10.1074/jbc.272.9.5375
  62. Rolfs A., Kvietikova I., Gassmann M., Wenger R.H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 1997; 272 (32): 20055–62. DOI: 10.1074/jbc.272.32.20055
  63. Tacchini L., Bianchi L., Bernelli-Zazzera A., Cairo G. Transferrin receptor induction by hypoxia. HIF-1- mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 1999; 274 (34): 24142–6. DOI: 10.1074/jbc.274.34.24142
  64. Schalinske K.L., Anderson S.A., Tuazon P.T., Chen O.S., Kennedy M.C., Eisenstein R.S. The ironsulfur cluster of iron regulatory protein 1 modulates the accessibility of RNA binding and phosphorylation sites. Biochemistry. 1997; 36 (13): 3950–8. DOI: 10.1021/bi9624447
  65. Liu Y.L., Ang S.O., Weigent D.A., Prchal J.T., Bloomer J.R. Regulation of ferrochelatase gene expression by hypoxia. Life Sci. 2004; 75 (17): 2035–43. DOI: 10.1016/j.lfs.2004.03.027
  66. McMahon S., Grondin F., McDonald P.P., Richard D.E., Dubois C.M. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxiainducible factor-1: impact on the bioactivation of proproteins. J. Biol. Chem. 2005; 280 (8): 6561–9. DOI: 10.1074/jbc.M413248200
  67. Maurer E., Gütschow M., Stirnberg M. Matriptase-2 (TMPRSS6) is directly up-regulated by hypoxia inducible factor-1: identification of a hypoxia-responsive element in the TMPRSS6 promoter region. Biol. Chem. 2012; 393 (6): 535–40. DOI: 10.1515/hsz-2011-0221
  68. Martin F., Linden T., Katschinski D.M., Oehme F., Flamme I., Mukhopadhyay C.K. et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood. 2005; 105 (12): 4613–9. DOI: 10.1182/blood-2004-10-3980
  69. Oktay Y., Dioum E., Matsuzaki S., Ding K., Yan L.J., Haller R.G. et al. Hypoxia-inducible factor 2alpha regulates expression of the mitochondrial aconitase chaperone protein frataxin. J. Biol. Chem. 2007; 282 (16): 11750–6. DOI: 10.1074/jbc.M611133200
  70. Dandekar T., Stripecke R., Gray N.K., Goossen B., Constable A., Johansson H.E. et al. Identification of a novel iron-responsive element in murine and human erythroid delta-aminolevulinic acid synthase mRNA. EMBO J. 1991; 10 (7): 1903–9. PMID: 2050126
  71. Torti F.M., Torti S.V. Regulation of ferritin genes and protein. Blood. 2002; 99 (10): 3505–16. DOI: 10.1182/blood.v99.10.3505
  72. Silvestri L., Pagani A., Camaschella C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood. 2008; 111: 924–31. DOI: 10.1182/blood-2007-07-100677

Об авторах

  • Купряшов Алексей Анатольевич, д-р мед. наук, заведующий отделом клинической и производственной трансфузиологии с диагностической лабораторией; ORCID
  • Ривняк Марина Ивановна, врач-исследователь; ORCID

 Если вы заметили опечатку, выделите текст и нажмите Alt+A