Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The effect of the left ventricular assist device of the disk type on some blood parameters

Authors: Golovina K.O., Golovin A.M., Ayzman R.I.

Company:
1 Novosibirsk State Pedagogical University, Novosibirsk, Russian Federation
2 IMPULSE-Project, Novosibirsk, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-1-78-88

UDC: 616.124.2-089.12

Link: Clinical Physiology of Blood Circulaiton. 2023; 1 (20): 78-88

Quote as: Golovina K.O., Golovin A.M., Ayzman R.I. The effect of the left ventricular assist device of the disk type on some blood parameters. Clinical Physiology of Circulation. 2023; 20 (1): 78–88 (in Russ.). DOI: 10.24022/1814-6910-2023-20-1-78-88

Received / Accepted:  23.11.2022 / 14.03.2023

Download
Full text:  

Abstract

Objective. To investigate the effects on some blood parameters of a new type of mechanical assist pump with a low rotor speed.

Material and methods. An investigational study of a prototype of a left ventricular assist device of the disc type on some parameters donated human blood was performed using a bench simulating a systemic circulation (n = 6) and in an experiment on laboratory animals in vivo (n = 3). At the bench, the device operated at 2500 rpm with a performance of 5 ± 0.5 l/min. The black-and-white male calves were used in vivo tests for 7 days; the average age of the animals was 4 months, and the average weight was 90 kg. The pump was connected paracorporally by the scheme “left ventricular apex – descending thoracic artery”. The pump operation was started at a speed of 900 rpm in open chest conditions. Subsequently, the rotor speed was gradually increased until a performance of 5 ± 0.5 l/min was obtained. After stabilization of the pump operation mode and reaching adequate hemodynamic indices, a layered closure of the animal's chest was performed.

Results. According to the outcome of six bench tests, the average level of free haemoglobin (Free Hb) was 0.03 ±0.1g/l. The average value of the normalized index of hemolysis (NIH) in six tests was 0.0018; the average value of the modified hemolysis index (MIH) was 2.18. An increase in Free Hb in the range from 0.01 ± 0 g/l to 0.05 ± 0.1 g/l was detected in animal studies on the first and second day of the test. Later, from the third day to the end of the observation, fluctuations in Free Hb were in the range of 0.03–0.04 g/l and did not significantly differ from the baseline values. There was a significant decrease in hematocrit (Hct) during the same period (1–3 days), which by the 4th day was almost recovered to baseline values. During the test, the concentrations of sodium, calcium, chlorine ions, and blood pH practically did not change, and the concentration of potassium tended to increase by the 5th–7th day.

Conclusion. The mechanical circulatory support disc pump did not cause significant hemolytic, electrolyte, and acid-base imbalances in the blood during 240 min of operation on the bench (in vitro) and 7 days in the test in vivo. This fact makes it advisable to recommend the device for short-term replacement of the heart as a bridge” to organ transplantation or to relieve it.

References

  1. Иткин Г.П., Шохина Е.Г., Шемакин С.Ю., Попцов В.Н., Шумаков Д.В., Готье С.В. Особенности длительной механической поддержки кровообращения с помощью насосов непрерывного потока. Вестник трансплантологии и искусственных органов. 2014; 14 (2): 110–15. DOI: 10.15825/1995-1191-2012-2-110-115
  2. Zinoviev R., Lippincott С.K., Keller S.C., Gilotra N.A. In full flow: left ventricular assist device infections in the modern era. Open Forum Infect. Dis. 2020; 7 (5): ofaa124. DOI: 10.1093/ofid/ofaa124
  3. Vieira J.L., Ventura H.O., Mehra M.R. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond. Prog. Cardiovasc. Dis. 2020; 63 (5): 630–9. DOI: 10.1016/j.pcad.2020.09.003
  4. Thenappan Th., Anderson A.S., Jeevanadham V., Rich J.D., Shah A.P. Treatment of left ventricular assist device thrombosis with extended catheter-directed intraventricular thrombolytic therapy. Circ. Heart Fail. 2013; 6 (3): 27–9. DOI: 10.1161/CIRCHEARTFAILURE.113.000013
  5. Жульков М.О., Сирота Д.А., Фомичев А.В., Гренадеров А.С., Чернявский А.М. Проблема биосовместимости и тромбогенности устройств вспомогательного кровообращения. Вестник трансплантологии и искусственных органов. 2020; 22 (4): 83–8. DOI: 10.15825/1995-1191-2020-4-83-88
  6. Kirklin J.K., Amtel D.C., Pagani F.D., Kormos R.L., Stevenson L.W., Blue E.D. et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015; 34 (12): 1495–504. DOI: 10.1016/j.healun.2015.10.003
  7. Slaughter M.S., Pagani F.D., Rogers J.G., Miller L.W., Sun B., Russell S.D. HeartMate II Clinical Investigators. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. Heart Lung Transplant. 2010; 29 (4): S1–39. DOI: 10.1016/j.healun.2010.01.011
  8. Дмитриева О.Ю., Бучнев А.С., Дробышев А.А., Иткин Г.П. Гемолизные исследования имплантируемого осевого насоса для двухэтапной трансплантации сердца у детей. Вестник трансплантологии и искусственных органов. 2017; 19 (1): 22–7. DOI: 10.15825/1995-1191-2017-1-22-27
  9. Mueller M.R., Schima H., Engelhardt H., Salat A., Olsen D.B., Losert U. et al. In vitro hematological testing of rotary blood pumps; remarks on standardization and data interpretation. Artif. Organs. 1993; 17 (2): 103–10. DOI: 10.1111/j.1525-1594.1993.tb00419.x
  10. Kawahito K., Nosé Y. Hemolysis in different centrifugal pumps. Artif. Organs. 1997; 21 (4): 323–6. DOI: 10.1111/j.1525-1594.1997.tb00369.x
  11. Nakazawa T., Takami Y., Benkowski R., Ohtsubo S., Yukio O., Tayama E. Development and initial testing of a permanently implantable centrifugal pump. Artif. Organs. 1997; 21 (7): 597–601. DOI: 10.1111/j.1525- 1594.1997.tb03707.x
  12. Araki K., Anai T., Oshikawa M., Nakamura K., Onitsuka T. In vitro performance of a centrifugal, a mixed flow, and an axial flow blood pump. Artif. Organs. 1998; 22 (5): 366–70. DOI: 10.1046/j.1525-1594. 1998. 06142.x
  13. Kawahito K., Nose Y. Hemolysis in different centrifugal pumps. Artif. Organs. 1997; 21 (4): 323–6. DOI: 10.1111/j.1525-1594.1997.tb00369.x
  14. Kobayashi S., Nitta S., Yambe T., Sonobe T., Naganuma S., Hashimoto H. Hemolysis test of disposable type vibrating flow pump. Artif. Organs. 1997; 21 (7): 691–3. DOI: 10.1111/j.1525-1594.1997.tb03724.x Göbel C., Eilers R., Reul H., Schwindke P., Jörger M., Rau G. A new blood pump for cardiopulmonary bypass: the hiflow centrifugal pump. Artif. Organs. 1997; 21 (7): 841–5. DOI: 10.1111/j.1525-1594.1997.tb03754.x
  15. Гланц С. Медико-биологическая статистика. Пер. с англ. 4-е изд. М.: Практика; 1999. https://studizba.com/files/show/pdf/14088-1-stenton-glanc-medikobiologicheskaya.html (дата обращения 12.01. 2023).
  16. Bourque K., Cotter C., Dague C., Harjes D., Dur O., Duhamel J. et al. Design rationale and preclinical evaluation of the heartmate 3 left ventricular assist system for hemocompatibility. ASAIO J. 2016; 62 (4): 375–83. DOI: 10.1097/MAT.0000000000000388
  17. Nakazawa T., Takami Y., Benkowski R., Ohtsubo S., Yukio O., Tayama E. et al. Development and initial testing of a permanently implantable centrifugal pump. Artif. Organs. 1997; 21 (7): 597–601. DOI: 10.1111/j.1525-1594.1997.tb03707.x
  18. Wright G. Haemolysis during cardiopulmonary bypass: update. Perfusion. 2001; 16 (5): 345–51. DOI: 10.1177/026765910101600504 20. Ravichandran A.K., Parker J., Novak E., Joseph S.M., Schilling J.D., Ewald G.A. Hemolysis in left ventricular assist device: a retrospective analysis of outcomes. J. Heart Lung Transplant. 2014: 33 (1): 44–50. DOI: 10.1016/j.healun.2013.08.019
  19. Zayat R., Moza A., Grottke O., Grzanna T., Fechter T., Motomura T. et al. In vitro comparison of the hemocompatibility of two centrifugal left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 2019; 157 (2): 591–9. DOI: 10.1016/j.jtcvs.2018.07.085
****
  1. Itkin G.P., Shokhina E.G., Shemakin S.Yu., Poptsov V.N., Shumakov D.V., Gauthier S.V. Features of long-term mechanical support of blood circulation with the help of continuous flow pumps. Bulletin of Transplantology and Artificial Organs. 2014; 14 (2): 110–15 (in Russ.). DOI: 10.15825/1995-1191-2012-2-110-115
  2. Zinoviev R., Lippincott С.K., Keller S.C., Gilotra N.A. In full flow: left ventricular assist device infections in the modern era. Open Forum Infect. Dis. 2020; 7 (5): ofaa124. DOI: 10.1093/ofid/ofaa124
  3. Vieira J.L., Ventura H.O., Mehra M.R. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond. Prog. Cardiovasc. Dis. 2020; 63 (5): 630–9. DOI: 10.1016/j.pcad.2020.09.003
  4. Thenappan Th., Anderson A.S., Jeevanadham V., Rich J.D., Shah A.P. Treatment of left ventricular assist device thrombosis with extended catheter-directed intraventricular thrombolytic therapy. Circ. Heart Fail. 2013; 6 (3): 27–9. DOI: 10.1161/CIRCHEARTFAILURE.113.000013
  5. Zhulkov M.O., Sirota D.A., Fomichev A.V., Grenaderov A.S., Chernyavskiy A.M. The problem of biocompatibility and thrombogenicity of auxiliary circulation devices. Bulletin of Transplantology and Artificial Organs. 2020; 22 (4): 83–8 (in Russ.). DOI: 10.15825/1995-1191-2020-4-83-8
  6. Kirklin J.K., Amtel D.C., Pagani F.D., Kormos R.L., Stevenson L.W., Blue E.D. et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 2015; 34 (12): 1495–504. DOI: 10.1016/j.healun.2015.10.003
  7. Slaughter M.S., Pagani F.D., Rogers J.G., Miller L.W., Sun B., Russell S.D. HeartMate II Clinical Investigators. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. Heart Lung Transplant. 2010; 29 (4): S1–39. DOI: 10.1016/j.healun.2010.01.011
  8. Dmitrieva O.Yu., Buchnev A.S., Drobyshev A.A., Itkin G.P. Hemolysis studies of an implantable axial pump for two-stage heart transplantation in children. Bulletin of Transplantology and Artificial Organs. 2017; 19 (1): 22–7 (in Russ.). DOI: 10.15825/1995- 1191-2017-1-22-27
  9. Mueller M.R., Schima H., Engelhardt H., Salat A., Olsen D.B., Losert U. et al. In vitro hematological testing of rotary blood pumps; remarks on standardization and data interpretation. Artif. Organs. 1993; 17 (2): 103–10. DOI: 10.1111/j.1525-1594.1993.tb00419.x
  10. Kawahito K., Nosé Y. Hemolysis in different centrifugal pumps. Artif. Organs. 1997; 21 (4): 323–6. DOI: 10.1111/j.1525-1594.1997.tb00369.x
  11. Nakazawa T., Takami Y., Benkowski R., Ohtsubo S., Yukio O., Tayama E. Development and initial testing of a permanently implantable centrifugal pump. Artif. Organs. 1997; 21 (7): 597–601. DOI: 10.1111/j.1525- 1594.1997.tb03707.x
  12. Araki K., Anai T., Oshikawa M., Nakamura K., Onitsuka T. In vitro performance of a centrifugal, a mixed flow, and an axial flow blood pump. Artif. Organs. 1998; 22 (5): 366–70. DOI: 10.1046/j.1525-1594. 1998. 06142.x
  13. Kawahito K., Nose Y. Hemolysis in different centrifugal pumps. Artif. Organs. 1997; 21 (4): 323–6. DOI: 10.1111/j.1525-1594.1997.tb00369.x
  14. Kobayashi S., Nitta S., Yambe T., Sonobe T., Naganuma S., Hashimoto H. Hemolysis test of disposable type vibrating flow pump. Artif. Organs. 1997; 21 (7): 691–3. DOI: 10.1111/j.1525-1594.1997.tb03724.x Göbel C., Eilers R., Reul H., Schwindke P., Jörger M., Rau G. A new blood pump for cardiopulmonary bypass: the hiflow centrifugal pump. Artif. Organs. 1997; 21 (7): 841–5. DOI: 10.1111/j.1525-1594.1997.tb03754.x
  15. Glants S. Medico-biological statistics. Transl. from English. Moscow; 1999 (in Russ.). https://studizba.com/files/show/pdf/14088-1-stenton-glanc-medikobiologicheskaya.html (accessed January 12, 2023)
  16. Bourque K., Cotter C., Dague C., Harjes D., Dur O., Duhamel J. et al. Design rationale and preclinical evaluation of the heartmate 3 left ventricular assist system for hemocompatibility. ASAIO J. 2016; 62 (4): 375–83. DOI: 10.1097/MAT.0000000000000388
  17. Nakazawa T., Takami Y., Benkowski R., Ohtsubo S., Yukio O., Tayama E. et al. Development and initial testing of a permanently implantable centrifugal pump. Artif. Organs. 1997; 21 (7): 597–601. DOI: 10.1111/j.1525-1594.1997.tb03707.x
  18. Wright G. Haemolysis during cardiopulmonary bypass: update. Perfusion. 2001; 16 (5): 345–51. DOI: 10.1177/026765910101600504
  19. Ravichandran A.K., Parker J., Novak E., Joseph S.M., Schilling J.D., Ewald G.A. Hemolysis in left ventricular assist device: a retrospective analysis of outcomes. J. Heart Lung Transplant. 2014: 33 (1): 44–50. DOI: 10.1016/j.healun.2013.08.019
  20. Zayat R., Moza A., Grottke O., Grzanna T., Fechter T., Motomura T. et al. In vitro comparison of the hemocompatibility of two centrifugal left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 2019; 157 (2): 591–9. DOI: 10.1016/j.jtcvs.2018.07.085

About Authors

  • Katerina O. Golovina, Postgraduate, Deputy General Director for Scientific Work; ORCID
  • Aleksandr M. Golovin, Cand. Tech. Sci., General Manager; ORCID
  • Roman I. Ayzman, Dr. Biol. Sci., Professor, Chief of Chair; ORCID

 If you found mistakes, select text and press Alt+A