Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Diagnostics of progression predictors of abdominal aortic aneurysm by computed tomographic angiography

Authors: Getsadze G.G., Aslanidis I.P., Dorofeev A.V., Arakelyan V.S., Mamalyga M.L., Fedorchenko P.V.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-2-140-154

UDC: 616.136-007.64-073.75

Link: Clinical Physiology of Blood Circulaiton. 2023; 2 (20): 140-154

Quote as: Getsadze G.G., Aslanidis I.P., Dorofeev A.V., Arakelyan V.S., Mamalyga M.L., Fedorchenko P.V. Diagnostics of progression predictors of abdominal aortic aneurysm by computed tomographic angiography. Clinical Physiology of Circulation. 2023; 20 (2): 140–54 (in Russ.). DOI: 10.24022/1814-6910-2023-20-2-140-154

Received / Accepted:  30.03.2023 / 21.04.2023

Download
Full text:  

Abstract

Objective – identification of predictors of abdominal aortic rupture and their threshold levels in abdominal aortic aneurysm (AАA) progression on the basis of MSCT study.

Material and methods. The study included 70 patients with infrarenal AAA divided into 3 groups: group 1 – with stable wall, group 2 – with unstable wall, group 3 – with AAA rupture. For each group, the following parameters were estimated at different levels: 1) maximum diameters and areas of: vessel, lumen, and wall at the level of the proximal AAA neck, at the level of maximum AAA dilation, and at the level of the terminal aortic section; 2) aneurysm extent; 3) ratio of aneurysm diameter to normal aortic diameter; 4) ratio of thrombosis area to aneurysm area; 5) tangential tension of the aortic wall; 6) degrees of calcification of the aneurysmal segment and the entire abdominal aorta. CT images were analyzed retrospectively on an image storage and transmission system workstation (Philips). Statistical analysis was performed using IBM SPSS program (version 26).

Results. According to the study wall instability occurred when AAA area increased 35% (P = 0.017) and tangential stress increased 1.3 times (P = 0.007). The ratio of thrombosed wall area to aneurysm area was 72%. There was no change in lumen area. ROC analysis showed thresholds of unstable wall: maximum aneurysm size of 58.7 mm; aneurysm area of 24.5 cm2, wall area of 15.4 cm2; ratio of thrombosed wall area to aneurysm area of 0.66. Further progression of AАA compared with stable aneurysm leads to a 1.55–fold increase in its extent at rupture (P = 0.004), a 58% increase in proximal neck vessel area (P = 0.019), and a 19% increase in lumen area (P = 0.044). Vessel area 5.7 cm2, lumen 4.1 cm2, and maximum diameter 28.3 mm can be considered threshold values according to ROC analysis at the level of the proximal neck. AAA rupture was defined as 2.9-fold (P < 0.001) increases in AAA area, 4.8-fold (P < 0.001) increases in wall area, and 1.7-fold increase in lumen area (P = 0.029). The threshold values for maximum AAA size were 7.6 cm, area was 34.4 cm2, and wall area was 17.4 cm2. Dilation of the terminal aorta can also be considered as a predictor of AAA rupture. Patients’ examination showed a 2.75-fold (P = 0.019) increases in terminal area, 4.5-fold (P = 0.010) increases in wall area, and 2.1-fold (P = 0.049) increases in lumen area. At aortic aneurysm rupture according to ROC analysis threshold vessel area in the terminal section was 14.7 cm2, wall area – 7 cm2, thrombosis thickness – 11.9 mm.

Conclusions. Analysis of the study showed that the threshold predictors of AAA rupture are maximum AAA diameter 7.6 cm, AAA area 34.4 cm2, AAA wall area 17.4 cm2, proximal neck area 5.7 cm2, vessel area, wall area and thrombosis thickness in the terminal aorta 14.7 cm2, 7 cm2, 11.9 mm respectively.

References

  1. Gaetani S.L., Deutsch J.C., Ju M.H. A ruptured mycotic aortic aneurysm in a patient with urinary retention: a case report. Radiol. Case Rep. 2022; 17 (5): 1362–5. DOI: 10.1016/j.radcr.2022.01.058
  2. Rouet L., Dufour C., Collet B.A., Bredahl K. CT and 3D-ultrasound registration for spatial comparison of post-EVAR abdominal aortic aneurysm measurements: a cross-sectional study. Comput. Med. Imaging. Graph. 2019; 73: 49–59. DOI: 10.1016/j.compmedimag.2019.02.004
  3. Cebull H.L., Soepriatna A.H., Boyle J.J., Rothenberger S.M., Goergen C.J. Strain mapping from fourdimensional ultrasound reveals complex remodeling in dissecting murine abdominal aortic aneurysms. J. Biomech. Eng. 2019; 141 (6): 060907. DOI: 10.1115/1.4043075
  4. Zagrapan B., Eilenberg W., Prausmueller S., Nawrozi P., Muench K., Hetzer S. et al. A novel diagnostic and prognostic score for abdominal aortic aneurysms based on D-dimer and a comprehensive analysis of myeloid cell parameters. Thromb. Haemost. 2019; 119 (5): 807–20. DOI: 10.1055/s–0039–1679939
  5. Абрикосов А.И., Струков В.И. Патологическая анатомия. М.; «МЕДГИЗ». 1954; 2: 499.
  6. Teng B., Zhou Z., Zhao Y., Wang Z. Combined curvature and wall shear stress analysis of abdominal aortic aneurysm: an analysis of rupture risk factors. Cardiovasc. Intervent. Radiol. 2022; 45: 752–60. DOI: 10.1007/s00270-022-03140-z
  7. Polzer S., Gasser T.Ch., Vlachovský R., Kubícek L., Lambert L., Man V. et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J. Vasc. Surg. 2020; 71 (2): 617–26. DOI: 10.1016/j.jvs.2019.03.051
  8. Бокерия Л.А., Гудкова Р.Г., Аракелян В.С. Хирургическое лечение аневризм грудной и грудобрюшной аорты в России. Грудная и сердечно–сосудистая хирургия. 2017; 59 (3): 181–90. DOI: 10.24022/0236-2791-59-3-181-190
  9. Antunes B.F.F., Tachibana A., Mendes C.A., Lembrança L., Silva M.J., Teivelis M.P. Signs of impending rupture in abdominal aortic and iliac artery aneurysms by computed tomography: outcomes in 41 patients. Clinics (Sao Paulo). 2021; 76: 2455. DOI: 10.6061/clinics/2021/e2455
  10. Chowdhury M.M., Zielinski L.P, Sun J.J., Lambraco S., Boyle J.R., Harrison S.C. et al. Calcification of thoracic and abdominal aneurysms is associated with mortality and morbidity. Eur. J. Vasc. Endovasc. Surg. 2018; 55 (1): 101–8. DOI: 10.1016/j.ejvs.2017.11.007
  11. Litmanovich D., Bankier A.A., Raptopoulos V., Cantin L., Boiselle P.M. CT and MRI in diseases of the aorta. AJR. 2009; 193 (4): 928–40. DOI: 10.2214/AJR.08.2166
  12. Liljeqvist M.L., Bogdanovic M., Siika A., Gasser T.Ch., Hultgren R., Roy J. Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Sci. Rep. 2021; 11 (1): 1–10. DOI: 10.1038/s41598-021-96512-3
  13. Domonkos A., Staffa R., Kubicek L. Effect of intraluminal thrombus on growth rate of abdominal aortic aneurysms. Int. Angiol. 2019; 38: 39–45. DOI: 10.23736/S0392-9590.18.04006-3
  14. Gasser T.Ch., Miller Ch., Polzer S., Roy J. A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments. Internat. J. Numer. Meth. Biomed. Engin. 2022; 39 (1): 1–27. DOI: 10.1002/cnm.3587
  15. Siika A.I., Liljeqvist M.L., Hultgren R., Gasser T.Ch., Roy J. Aortic lumen area is increased in ruptured abdominal aortic aneurysms and correlates to biomechanical rupture risk. J. Endovasc. Therapy. 2018; 25 (6): 750–6. DOI: 10.1177/1526602818808292
  16. Калинин Р.Е., Пшенников А.С., Сучков И.А., Деев Р.В., Мжаванадзе Н.Д. Основы ангиологии. М.: Издательская группа «ГЭОТАР-Медиа»; 2018.
  17. Agatston A.S., Janowiz W.R., Hildner F.J., Zusmer N.R., Viamonte M. Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15 (4): 827–32. DOI: 10.1016/0735-1097(90)90282-t
  18. Chaikof E.L., Dalman R.L., Eskandari M.K., Jackson B.M., Lee W.A., Mansour M.A. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67 (1): 2–77. DOI: 10.1016/j.jvs.2017.10.044
  19. McClarty D.B., Kuhn D.C.S., Boyd A.J. Hemodynamic Changes in an actively rupturing abdominal aortic aneurysm. J. Vasc. Res. 2021; 58 (3): 172–9. DOI: 10.1159/000514237
  20. Nana P., Spanos K., Dakis K., Brodis A., Kouvelos G. Imaging predictive factors of abdominal aortic aneurysm growth. J. Clin. Med. 2021; 10 (9): 1917. DOI: 10.3390/jcm10091917
  21. Riveros F., Martufi G., Gasser T.C., RodriguezMatas J.F. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann. Biomed. Eng. 2015; 43: 2253–64. DOI: 10.1007/s10439-015-1267-x
  22. Haller S.J., Crawford J.D., Courchaine K.M., Bohannan C.J., Landry G.J., Moneta G.L. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67: 1051–8. DOI: 10.1016/j.jvs.2017.08.069
  23. Chengcheng Z., Joseph R.L., Yuting W., Warren G., David S., Michael D.H. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. Radiology. 2020; 294 (3): 707–13. DOI: 10.1148/radiol.2020191723
  24. Stenbaek J., Kalin B., Swedenborg J. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2000; 20 (5): 466–9. DOI: 10.1053/ejvs.2000.1217
  25. Asada Y., Yamashita A., Sato Y., Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathology International. 2020; 70 (6): 309–22. DOI: 10.1111/pin.12921
  26. Koole D., Zandvoort H.J., Schoneveld A., Vink A., Vos J.A., van den Hoogen L.L. et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 2013; 57: 77–83. DOI: 10.1016/j.jvs.2012.07.003
  27. Leow K., Szulc P., Schousboe J.T., Kiel D.P., TeixeiraPinto A., Shaikh H. et al. Prognostic value of abdominal aortic calcification: a systematic review and metaanalysis of observational studies. J. Am. Heart Assoc. 2021; 10 (2): e017205. DOI: 10.1161/JAHA.120.017205
  28. Hermann D.M., Lehmann N., Gronewold J., Bauer M., Mahabadi A.A., Weimar C. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (6): 684–90. DOI: 10.1093/ehjci/jeu293
  29. Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G.W., Natour E. et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 2019; 39: 1351–68. DOI: 10.1161/ATVBAHA.119.312787
  30. Buijs R.V., Willems T.P., Tio R.A., Boersma H.H., Tielliu I.F., Slart R.H. et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2013; 46 (5): 542–8. DOI: 10.1016/j.ejvs.2013.09.006
  31. Бриль К.Р., Пронкин А.А., Галян Т.Н., Ховрин В.В. Магнитно-резонансная томография в диагностике нарушений эластических свойств стенки аорты и ее гемодинамики. Вестник рентгенологии и радиологии. 2023; 104 (2): 115–23. DOI: 10.20862/0042-4676-2023-104-2-115-123
****
  1. Gaetani S.L., Deutsch J.C., Ju M.H. A ruptured mycotic aortic aneurysm in a patient with urinary retention: a case report. Radiol. Case Rep. 2022; 17 (5): 1362–5. DOI: 10.1016/j.radcr.2022.01.058
  2. Rouet L., Dufour C., Collet B.A., Bredahl K. CT and 3D-ultrasound registration for spatial comparison of post-EVAR abdominal aortic aneurysm measurements: a cross-sectional study. Comput. Med. Imaging. Graph. 2019; 73: 49–59. DOI: 10.1016/j.compmedimag.2019.02.004
  3. Cebull H.L., Soepriatna A.H., Boyle J.J., Rothenberger S.M., Goergen C.J. Strain mapping from fourdimensional ultrasound reveals complex remodeling in dissecting murine abdominal aortic aneurysms. J. Biomech. Eng. 2019; 141 (6): 060907. DOI: 10.1115/1.4043075
  4. Zagrapan B., Eilenberg W., Prausmueller S., Nawrozi P., Muench K., Hetzer S. et al. A novel diagnostic and prognostic score for abdominal aortic aneurysms based on D-dimer and a comprehensive analysis of myeloid cell parameters. Thromb. Haemost. 2019; 119 (5): 807–20. DOI: 10.1055/s–0039–1679939
  5. Abrikosov A.I., Strukov V.I. Pathological anatomy. Moscow: 1954; 2: 499 (in Russ.).
  6. Teng B., Zhou Z., Zhao Y., Wang Z. Combined curvature and wall shear stress analysis of abdominal aortic aneurysm: an analysis of rupture risk factors. Cardiovasc. Intervent. Radiol. 2022; 45: 752–60. DOI: 10.1007/s00270-022-03140-z
  7. Polzer S., Gasser T.Ch., Vlachovský R., Kubícek L., Lambert L., Man V. et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J. Vasc. Surg. 2020; 71 (2): 617–26. DOI: 10.1016/j.jvs.2019.03.051
  8. Bockeria L.A., Gudkova R.G., Arakelyan V.S. Surgical treatment of aneurysms of the thoracic and phrenic aorta in Russia. Grudnaya i Serdechno-Sosudistaya Khirurgiya (Russian Journal of Thoracic and Cardio-vascular Surgery). 2017; 59 (3): 181–90. DOI: 10.24022/0236-2791-59-3-181-190
  9. Antunes B.F.F., Tachibana A., Mendes C.A., Lembrança L., Silva M.J., Teivelis M.P. Signs of impending rupture in abdominal aortic and iliac artery aneurysms by computed tomography: outcomes in 41 patients. Clinics (Sao Paulo). 2021; 76: 2455. DOI: 10.6061/clinics/2021/e2455
  10. Chowdhury M.M., Zielinski L.P, Sun J.J., Lambraco S., Boyle J.R., Harrison S.C. et al. Calcification of thoracic and abdominal aneurysms is associated with mortality and morbidity. Eur. J. Vasc. Endovasc. Surg. 2018; 55 (1): 101–8. DOI: 10.1016/j.ejvs.2017.11.007
  11. Litmanovich D., Bankier A.A., Raptopoulos V., Cantin L., Boiselle P.M. CT and MRI in diseases of the aorta. AJR. 2009; 193 (4): 928–40. DOI: 10.2214/AJR.08.2166
  12. Liljeqvist M.L., Bogdanovic M., Siika A., Gasser T.Ch., Hultgren R., Roy J. Geometric and biomechanical modeling aided by machine learning improves the prediction of growth and rupture of small abdominal aortic aneurysms. Sci. Rep. 2021; 11 (1): 1–10. DOI: 10.1038/s41598-021-96512-3
  13. Domonkos A., Staffa R., Kubicek L. Effect of intraluminal thrombus on growth rate of abdominal aortic aneurysms. Int. Angiol. 2019; 38: 39–45. DOI: 10.23736/S0392-9590.18.04006-3
  14. Gasser T.Ch., Miller Ch., Polzer S., Roy J. A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments. Internat. J. Numer. Meth. Biomed. Engin. 2022; 39 (1): 1–27. DOI: 10.1002/cnm.3587
  15. Siika A.I., Liljeqvist M.L., Hultgren R., Gasser T.Ch., Roy J. Aortic lumen area is increased in ruptured abdominal aortic aneurysms and correlates to biomechanical rupture risk. J. Endovasc. Therapy. 2018; 25 (6): 750–6. DOI: 10.1177/1526602818808292
  16. Kalinin R.E., Pshennikov A.S., Suchkov I.A., Deev R.V., Mzhavanadze N.D. Fundamentals of angiology. Moscow; 2018 (in Russ.).
  17. Agatston A.S., Janowiz W.R., Hildner F.J., Zusmer N.R., Viamonte M. Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15 (4): 827–32. DOI: 10.1016/0735-1097(90)90282-t
  18. Chaikof E.L., Dalman R.L., Eskandari M.K., Jackson B.M., Lee W.A., Mansour M.A. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67 (1): 2–77. DOI: 10.1016/j.jvs.2017.10.044
  19. McClarty D.B., Kuhn D.C.S., Boyd A.J. Hemodynamic Changes in an actively rupturing abdominal aortic aneurysm. J. Vasc. Res. 2021; 58 (3): 172–9. DOI: 10.1159/000514237
  20. Nana P., Spanos K., Dakis K., Brodis A., Kouvelos G. Imaging predictive factors of abdominal aortic aneurysm growth. J. Clin. Med. 2021; 10 (9): 1917. DOI: 10.3390/jcm10091917
  21. Riveros F., Martufi G., Gasser T.C., RodriguezMatas J.F. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann. Biomed. Eng. 2015; 43: 2253–64. DOI: 10.1007/s10439-015-1267-x
  22. Haller S.J., Crawford J.D., Courchaine K.M., Bohannan C.J., Landry G.J., Moneta G.L. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67: 1051–8. DOI: 10.1016/j.jvs.2017.08.069
  23. Chengcheng Z., Joseph R.L., Yuting W., Warren G., David S., Michael D.H. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. Radiology. 2020; 294 (3): 707–13. DOI: 10.1148/radiol.2020191723
  24. Stenbaek J., Kalin B., Swedenborg J. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2000; 20 (5): 466–9. DOI: 10.1053/ejvs.2000.1217
  25. Asada Y., Yamashita A., Sato Y., Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathology International. 2020; 70 (6): 309–22. DOI: 10.1111/pin.12921
  26. Koole D., Zandvoort H.J., Schoneveld A., Vink A., Vos J.A., van den Hoogen L.L. et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 2013; 57: 77–83. DOI: 10.1016/j.jvs.2012.07.003
  27. Leow K., Szulc P., Schousboe J.T., Kiel D.P., TeixeiraPinto A., Shaikh H. et al. Prognostic value of abdominal aortic calcification: a systematic review and metaanalysis of observational studies. J. Am. Heart Assoc. 2021; 10 (2): e017205. DOI: 10.1161/JAHA.120.017205
  28. Hermann D.M., Lehmann N., Gronewold J., Bauer M., Mahabadi A.A., Weimar C. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (6): 684–90. DOI: 10.1093/ehjci/jeu293
  29. Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G.W., Natour E. et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 2019; 39: 1351–68. DOI: 10.1161/ATVBAHA.119.312787
  30. Buijs R.V., Willems T.P., Tio R.A., Boersma H.H., Tielliu I.F., Slart R.H. et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2013; 46 (5): 542–8. DOI: 10.1016/j.ejvs.2013.09.006
  31. Bril K.R., Pronkin A.A., Galyan T.N., Khovrin V.V. Magnetic Resonance Imaging in the Diagnosis of Aortic Wall Elastic Properties Disorders and Its Hemodynamics. Journal of Radiology and Nuclear Medicine. 2023; 104 (2): 115–23 (in Russ.). DOI: 10.20862/0042-4676-2023-104-2-115-123

About Authors

  • Gela G. Getsadze, Researcher, Radiologist of Department of Cardiovascular Radiology Diagnostics; ORCID
  • АIrakliy P. Aslanidis, Dr. Med. Sci., Professor, Deputy Director, Head of Department of Nuclear Diagnostics; ORCID
  • Aleksey V. Dorofeev, Cand. Med. Sci., Head of X-Ray Diagnostic Department, CT and MRI; ORCID
  • Valeriy S. Arakelyan, Dr. Med. Sci., Professor, Head of Department of Arterial Pathology Surgery; ORCID
  • Maksim L. Mamalyga, Dr. Med. Sci., Senior Researcher of Department of Surgical Treatment of Ischemic Heart Disease; ORCID
  • Polina V. Fedorchenko, Researcher, Radiologist of Department of Cardiovascular Radiology Diagnostics; ORCID

 If you found mistakes, select text and press Alt+A