Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Transthoracic echocardiography using tissue Doppler and speckle-tracking techniques to assess biomechanical properties of the ascending aorta. First experience in Russia

Authors: Golukhova E.Z., Pursanova D.M., Mironenko V.A., Mironenko M.Yu., Tkhashokova L.R.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-3-278-287

UDC: 616.132.13-073.43

Link: Clinical Physiology of Blood Circulaiton. 2023; 3 (20): 278-287

Quote as: Golukhova E.Z., Pursanova D.M., Mironenko V.A., Mironenko M.Yu., Tkhashokova L.R. Transthoracic echocardiography using tissue Doppler and speckle-tracking techniques to assess biomechanical properties of the ascending aorta. First experience in Russia. Clinical Physiology of Circulation. 2023; 20 (3): 278–87 (in Russ.). DOI: 10.24022/1814-6910-2023-20-3-278-287

Received / Accepted:  11.07.2023 / 14.08.2023

Download
Full text:  

Abstract

Introduction. The currently used parameters for predicting the development of fatal complications of AAA (ascending aortic aneurysms) – absolute diameter of the ascending aorta (AA) and its growth rate – do not have sufficient reliability required for accurate stratification of patients by risk of disease progression. In this regard the assessment of biomechanical properties of AA is promising. Purpose of the study: comparative analysis of AA wall biomechanical properties in patients with AAA and in the control group using transthoracic ultrasound techniques – tissue Doppler (TD) and speckle-tracking echocardiography (STE).

Material and methods. 40 patients (27 men, 13 women) in two main groups were included in the study: with AAA with diameter more than 45 mm (n = 20) and control group with AA diameter less than 40 mm (n = 20). Transthoracic echocardiography was performed according to the standard technique, as well as using TD and STE (adapted programs used for myocardial assessment).

Results. Mean values of AA diameter in the groups were significantly different and were of 54 [46; 58] mm vs. 30 [29; 34] mm, respectively (p<0.05). In AAA patients, compares to the control group, significant differences in aortic wall characteristics were revealed – decreased deformation and distensibility, as well as increased elasticity and stiffness (p<0.05). The analysis of TD results showed that the maximum and minimum AA diameters, as well as the velocity index S (systolic displacement velocity) were significantly different between the groups with AA and the control group (p<0.05). The analysis of STE results showed that in the group with AAA the index of longitudinal deformation was significantly lower in two segments (out of four analyzed) – anterior sinus and posterior AA (p<0.05). Other indices – A and E index at TD – as well as longitudinal deformation of the other two segments at STE (anterior AA and posterior sinus) were not statistically significantly different (p>0.05).

Conclusion. Initial results has shown that the use of TD and STE ultrasound techniques allows non-invasive assessment of biomechanical properties of dilated AA wall. It was found that in AAA, compared to the control group, statistically significantly decreased TD indicators – minimum and maximum AA diameters, systolic displacement velocity, as well as STE indicators – longitudinal deformation of the anterior sinus and posterior AA (p < 0.05).

References

  1. ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022; 80 (24): e223–e393. DOI: 10.1016/j.jacc.2022.08.004
  2. Mantella L.E., Chan W., Bisleri G., Hassan S.M.A., Liblik K., Benbarkat H. et al. The use of ultrasound to assess aortic biomechanics: Implications for aneurysm and dissection. Echocardiography. 2020; 37 (11): 1844–50. DOI: 10.1111/echo.14856
  3. Сандриков В.А., Белов Ю.В., Кулагина Т.Ю., Чарчян Э.Р., Гаврилов А.В., Архипов И.В. и др. Векторное картирование деформации и потоков крови у пациентов с аневризмой восходящей аорты. Ангиология и сосудистая хирургия. 2019; 25 (2): 40–6. DOI: 10.33529/ANGIO2019224
  4. Жирнова О.А., Берестень Н.Ф., Пестовская О.Р., Богданова Е.Я. Неинвазивная диагностика нарушения эластических свойств артериальных сосудов. http://angiologia.ru/specialist/journal_angiologia/001_2011/05/
  5. Bieseviciene M., Vaskelyte J.J., Mizariene V., Karaliute R., Lesauskaite V., Verseckaite R. Two-dimensional speckle-tracking echocardiography for evaluation of dilative ascending aorta biomechanics. BMC Cardiovasc. Disord. 2017; 17 (1): 27. DOI: 10.1186/s12872-016-0434-9
  6. Рудой А.С., Бова А.А., Валюженич Я.И., Шкребнева Э.И., Островский Ю.П., Спиридонов С.В. и др. Первый опыт применения в Республике Беларусь технологии 2D speckle-tracking эхокардиографии для оценки сократимости грудного отдела аорты. Медицинские новости. 2019; 4: 42–5.
  7. Врублевский А.В., Панфилов Д.С., Козлов Б.Н., Саушкин В.В., Сазонова С.И. Нарушения биомеханики восходящего отдела аорты при пограничном расширении и аневризме. Российский кардиологический журнал. 2023; 28 (5): 5365. DOI: 10.15829/1560-4071-2023-5365
  8. Ren M., Li X., Xue M. Aortic elasticity evaluated by pulsed tissue Doppler imaging of the ascending aorta in different diseases: A systematic review. Angiology. 2021; 72 (5): 403–10. DOI: 10.1177/0003319721992584
  9. Zanoli L., Lentini P., Ronco C. Pulsed tissue Doppler imaging and aortic stiffness. Angiology. 2021; 72 (5): 401–2. DOI: 10.1177/0003319720981520
  10. Teixeira R., Vieira M.J., Gonçalves A., Cardim N., Gonçalves L. Ultrasonographic vascular mechanics to assess arterial stiffness: a review. Eur. Heart J. Cardio vasc. Imaging. 2016; 17 (3): 233–46. DOI: 10.1093/ehjci/jev287
  11. Niestrawska J.A., Regitnig P., Viertler C., Cohnert T.U., Babu A.R., Holzapfel G.A. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms. Acta Biomater. 2019; 1; 88: 149–61. DOI: 10.1016/j.actbio.2019.01.070
  12. Мушкамбаров И.Н., Берестень Н.Ф., Ткаченко С.Б. Ассоциированность изменения упруго-эластических свойств грудного отдела аорты и выраженности коронарного атеросклероза. Лучевая диагностика и терапия. 2020; 11 (4): 60–7. DOI: 10.22328/2079-5343-2020-11-4-60-67
  13. Batagini N.C., Ventura C.A., Raghavan M.L., Chammas M.C., Tachibana A., da Silva E.S. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm. Vasc. Med. 2016; 21 (3): 209–16. DOI: 10.1177/1358863X16629727
  14. Van Disseldorp E.M., Petterson N.J., Rutten M.C., van de Vosse F.N., van Sambeek M.R., Lopata R.G. Patient specific wall stress analysis and mechanical characterization of abdominal aortic aneurysms using 4D ultrasound. Eur. J. Vasc. Endovasc. Surg. 2016; 52 (5): 635–42. DOI: 10.1016/j.ejvs.2016.07.088
  15. Липовка А.И., Карпенко А.А., Чупахин А.П., Паршин Д.В. Исследование прочностных свойств сосудов абдоминального отдела аорты: результаты экспериментов и перспективы. Прикладная механика и техническая физика. 2022; 63 (2): 84–93. DOI: 10.15372/PMTF20220208
  16. Lin S., Morgant M.C., Marín-Castrillón D.M., Walker P.M., Aho Glélé L.S., Boucher A. et al. Aortic local biomechanical properties in ascending aortic aneurysms. Acta Biomater. 2022; 149: 40–50. DOI: 10.1016/j.actbio.2022.06.019
  17. Pereira T., Correia C., Cardoso J. Novel methods for pulse wave velocity measurement. J. Med. Biol. Eng. 2015; 35 (5): 555–65. DOI: 10.1007/s40846-015-0086-8
  18. Андреевская М.В., Чихладзе Н.М., Саидова М.А. Возможности ультразвуковых методов оценки ригидности аорты и ее значимость при патологии сердца и сосудов. Ультразвуковая и функциональная диагностика. 2015; 2: 91–100.
  19. Kadoglou N.P., Moulakakis K.G., Papadakis I., Ikonomidis I., Alepaki M., Lekakis J. et al. Changes in aortic pulse wave velocity of patients undergoing endovascular repair of abdominal aortic aneurysms. J. Endovasc. Ther. 2012; 19 (5): 661–6. DOI: 10.1583/JEVT-12- 3916MR.1
  20. Гуревич А.П., Емельянов И.В., Бояринова М.А., Могучая Е.В., Ротарь О.П., Кудаев Ю.А. и др. Жесткость сосудистой сетки и центральное аортальное давление у пациентов с артериальной гипертензией и аневризмой брюшной аорты. Артериальная гипертензия. 2022; 28 (3): 243–52. DOI: 10.18705/1607-419X-2022-28-3-243-252
  21. Loizou C.P., Pattichis C.S., Pantziaris M., Kyriacou E., Nicolaides A. Texture feature variability in ultrasound video of the atherosclerotic carotid plaque. IEEE J. Transl. Eng. Health Med. 2017; 5: 1800509. DOI: 10.1109/JTEHM.2017.2728662
  22. Vitarelli A., Giordano M., Germanò G., Pergolini M., Cicconetti P., Tomei F. et al. Assessment of ascending aorta wall stiffness in hypertensive patients by tissue Doppler imaging and strain Doppler echocardiography. Heart. 2010; 96 (18): 1469–74. DOI: 10.1136/hrt.2010.198358
  23. Vitarelli A., Conde Y., Cimino E., D'Angeli I., D'Orazio S., Stellato S. et al. Aortic wall mechanics in the Marfan syndrome assessed by transesophageal tissue Doppler echocardiography. Am. J. Cardiol. 2006; 97 (4): 571–7. DOI: 10.1016/j.amjcard.2005.09.089
  24. Alreshidan M., Shahmansouri N., Chung J., Lash V., Emmott A., Leask R.L. et al. Obtaining the biomechanical behavior of ascending aortic aneurysm via the use of novel speckle tracking echocardiography. J. Thorac. Cardiovasc. Surg. 2017; 153 (4): 781–8. DOI: 10.1016/j.jtcvs.2016.11.056
  25. Emmott A., Alzahrani H., Alreshidan M., Therrien J., Leask R.L., Lachapelle K. Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter. J. Thorac. Cardiovasc. Surg. 2018; 156 (2): 503–12.e1. DOI: 10.1016/j.jtcvs.2018.01.107
****
  1. ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022; 80 (24): e223–e393. DOI: 10.1016/j.jacc.2022.08.004
  2. Mantella L.E., Chan W., Bisleri G., Hassan S.M.A., Liblik K., Benbarkat H. et al. The use of ultrasound to assess aortic biomechanics: Implications for aneurysm and dissection. Echocardiography. 2020; 37 (11): 1844–50. DOI: 10.1111/echo.14856
  3. Sandrikov V.A., Belov YuV., Kulagina T.Yu., Charchyan E.R., Gavrilov A.V., Arkhipov I.V. et al. Vector mapping of deformation and blood flows in patients with ascending aortic aneurysm. Angiology and Vascular Surgery. 2019; 25 (2): 40–6 (in Russ.). DOI: 10.33529/ANGIO2019224
  4. Zhirnova O.A., Beresten N.F., Pestovskaya O.R., Bogdanova E.Ya. Noninvasive diagnosis of disorders of the elastic properties of arterial vessels. http://angiologia.ru/specialist/journal_angiologia/001_2011/05/ (in Russ.).
  5. Bieseviciene M., Vaskelyte J.J., Mizariene V., Karaliute R., Lesauskaite V., Verseckaite R. Two-dimensional speckle-tracking echocardiography for evaluation of dilative ascending aorta biomechanics. BMC Cardiovasc. Disord. 2017; 17 (1): 27. DOI: 10.1186/s12872-016-0434-9
  6. Rudoy A.S., Bova A.A., Valyuzhenich Ya.I., Shkrebneva E.I., Ostrovskiy Yu.P., Spiridonov S.V. et al. The first experience of applying 2D speckle-tracking echocardiography to assess the contractility of the thoracic aorta in the Republic of Belarus. Meditsinskie Novosti. 2019; 4: 42–5 (in Russ.).
  7. Vrublevsky A.V., Panfilov D.S., Kozlov B.N., Saushkin V.V., Sazonova S.I. Disturbances of the ascending aorta biomechanics in moderate dilatation and aneurysm. Russian Journal of Cardiology. 2023; 28 (5): 5365 (in Russ.). DOI: 10.15829/1560-4071-2023-5365
  8. Ren M., Li X., Xue M. Aortic elasticity evaluated by pulsed tissue Doppler imaging of the ascending aorta in different diseases: A systematic review. Angiology. 2021; 72 (5): 403–10. DOI: 10.1177/0003319721992584
  9. Zanoli L., Lentini P., Ronco C. Pulsed tissue Doppler imaging and aortic stiffness. Angiology. 2021; 72 (5): 401–2. DOI: 10.1177/0003319720981520
  10. Teixeira R., Vieira M.J., Gonçalves A., Cardim N., Gonçalves L. Ultrasonographic vascular mechanics to assess arterial stiffness: a review. Eur. Heart J. Cardio vasc. Imaging. 2016; 17 (3): 233–46. DOI: 10.1093/ehjci/jev287
  11. Niestrawska J.A., Regitnig P., Viertler C., Cohnert T.U., Babu A.R., Holzapfel G.A. The role of tissue remodeling in mechanics and pathogenesis of abdominal aortic aneurysms. Acta Biomater. 2019; 1; 88: 149–61. DOI: 10.1016/j.actbio.2019.01.070
  12. Mushkambarov I.N., Beresten N.F., Tkachenko S.B. Association of thoracic aorta elasticity changes and severity of coronary atherosclerosis. Diagnostic Radiology and Radiotherapy. 2020; 11 (4): 60–7 (in Russ.). DOI: 10.22328/2079-5343-2020-11-4-60-67
  13. Batagini N.C., Ventura C.A., Raghavan M.L., Chammas M.C., Tachibana A., da Silva E.S. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm. Vasc. Med. 2016; 21 (3): 209–16. DOI: 10.1177/1358863X16629727
  14. Van Disseldorp E.M., Petterson N.J., Rutten M.C., van de Vosse F.N., van Sambeek M.R., Lopata R.G. Patient specific wall stress analysis and mechanical characterization of abdominal aortic aneurysms using 4D ultrasound. Eur. J. Vasc. Endovasc. Surg. 2016; 52 (5): 635–42. DOI: 10.1016/j.ejvs.2016.07.088
  15. Lipovka A.I., Karpenko A.A., Chupakhin A.P., Parshin D.V. Strength properties of abdominal aortic vessels: experimental results and perspectives. Journal of Applied Mechanics and Technical Physics. 2022; 63 (2): 251–8 (in Russ.).
  16. Lin S., Morgant M.C., Marín-Castrillón D.M., Walker P.M., Aho Glélé L.S., Boucher A. et al. Aortic local biomechanical properties in ascending aortic aneurysms. Acta Biomater. 2022; 149: 40–50. DOI: 10.1016/j.actbio.2022.06.019
  17. Pereira T., Correia C., Cardoso J. Novel methods for pulse wave velocity measurement. J. Med. Biol. Eng. 2015; 35 (5): 555–65. DOI: 10.1007/s40846-015-0086-8
  18. Andreevskaya M.V., Chikhladze N.M., Saidova M.A. Aortic stiffness ultrasound assessment in cardiovascular pathology. Ultrasound and Functional Diagnostics. 2015; 2: 91–100 (in Russ.).
  19. Kadoglou N.P., Moulakakis K.G., Papadakis I., Ikonomidis I., Alepaki M., Lekakis J. et al. Changes in aortic pulse wave velocity of patients undergoing endovascular repair of abdominal aortic aneurysms. J. Endovasc. Ther. 2012; 19 (5): 661–6. DOI: 10.1583/JEVT-12- 3916MR.1
  20. Gurevich A.P., Emelyanov I.V., Boyarinova M.A., Moguchaya E.V., Rotar O.P., Kudaev Yu.A. et al. Arterial stiffness and central aortic blood pressure in patients with hypertension and abdominal aortic aneurysm. Arterial Hypertension. 2022; 28 (3): 243–52 (in Russ.). DOI: 10.18705/1607-419X-2022-28-3-243-252
  21. Loizou C.P., Pattichis C.S., Pantziaris M., Kyriacou E., Nicolaides A. Texture feature variability in ultrasound video of the atherosclerotic carotid plaque. IEEE J. Transl. Eng. Health Med. 2017; 5: 1800509. DOI: 10.1109/JTEHM.2017.2728662
  22. Vitarelli A., Giordano M., Germanò G., Pergolini M., Cicconetti P., Tomei F. et al. Assessment of ascending aorta wall stiffness in hypertensive patients by tissue Doppler imaging and strain Doppler echocardiography. Heart. 2010; 96 (18): 1469–74. DOI: 10.1136/hrt.2010.198358
  23. Vitarelli A., Conde Y., Cimino E., D'Angeli I., D'Orazio S., Stellato S. et al. Aortic wall mechanics in the Marfan syndrome assessed by transesophageal tissue Doppler echocardiography. Am. J. Cardiol. 2006; 97 (4): 571–7. DOI: 10.1016/j.amjcard.2005.09.089
  24. Alreshidan M., Shahmansouri N., Chung J., Lash V., Emmott A., Leask R.L. et al. Obtaining the biomechanical behavior of ascending aortic aneurysm via the use of novel speckle tracking echocardiography. J. Thorac. Cardiovasc. Surg. 2017; 153 (4): 781–8. DOI: 10.1016/j.jtcvs.2016.11.056
  25. Emmott A., Alzahrani H., Alreshidan M., Therrien J., Leask R.L., Lachapelle K. Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter. J. Thorac. Cardiovasc. Surg. 2018; 156 (2): 503–12.e1. DOI: 10.1016/j.jtcvs.2018.01.107

About Authors

  • Elena Z. Golukhova, Dr. Med. Sci., Professor, Academician of RAS, Director of the Center; ORCID
  • Diana M. Pursanova, Dr. Med. Sci., Professor of the Chair of Radiology, Senior Researcher; ORCID
  • Vladimir A. Mironenko, Dr. Med. Sci., Head of the Department of Reconstructive Surgery and Aortic Arch, Cardiovascular Surgeon; ORCID
  • Marina Yu. Mironenko, Cand. Med. Sci., Head of the Department of Ultrasonic Diagnostics, Ultrasonic Diagnostician; ORCID
  • Luiza R. Tkhashokova, Postgraduate; ORCID

 If you found mistakes, select text and press Alt+A