Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Decrease in longitudinal deformation of the basal segments of the left ventricle in pregnant women with low-symptom COVID-19

Authors: Doroshenko D.A.1 1, Rumyantsev Yu.I.1, Zubareva E.A.3, Vechorko V.I.1, Sandrikov V.A.2

Company:
1 City Clinical Hospital No. 15 named after O.M. Filatov, Moscow, Russian Federation
2 Russian Scientific Center of Surgery named after Academician B.V. Petrovsky, Moscow, Russian Federation
3 Pirogov Russian National Research Medical University, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-4-337-343

UDC: [616.124.2:618.3]+578.834.11

Link: Clinical Physiology of Blood Circulaiton. 2023; 4 (20): 337-343

Quote as: Doroshenko D.A., Rumyantsev Yu.I., Zubareva E.A., Vechorko V.I., Sandrikov V.A. Decrease in longitudinal deformation of the basal segments of the left ventricle in pregnant women with low-symptom COVID-19. Clinical Physiology of Circulation. 2023; 20 (4): 337–43 (in Russ.). DOI: 10.24022/1814-6910-2023-20-4-337-343

Received / Accepted:  23.10.2023 / 03.12.2023

Download
Full text:  

Abstract

Objective. Assessment of the decrease in basal longitudinal deformation using 2-dimensional speckle-tracking echocardiography (STE) at the hospital and post hospital stages in pregnant women with confirmed coronavirus infection, with a predominance of the Omicron strain, hospitalized at the City Clinical Hospital No. 15 named after O.M. Filatov.

Material and methods. The results of STE were analyzed in 70 pregnant women in the II–III trimester with confirmed coronavirus infection at the hospital stage of treatment and 47 patients 6 months after hospitalization. All patients underwent transthoracic echocardiography (TTE) combined with STE on Vivid E95 and Vivid iq ultrasound scanners (GE, USA).

Results. The use of STE at the hospital stage in pregnant women with COVID-19 in the II–III trimester revealed a decrease in the longitudinal deformation of the basal segments of the left ventricle (LSLVbasal) in about 30% of cases. The number of observations in the dynamic control group (>6 months from the moment of delivery) in patients without previously detected changes in LSLVbasal was 32 and 15 cases in patients with previously established reduced LSLVbasal.

Conclusion. The decrease in LSLVbasal was not accompanied by a decrease in global longitudinal deformation of the left ventricle in patients, but, in our opinion, it became one of the markers of myocardial dysfunction requiring further more detailed study.

References

  1. Акимкин В.Г., Попова А.Ю., Хафизов К.Ф., Дубоделов Д.В., Углева С.В., Семененко Т.А. и др. COVID-19: эволюция пандемии в России. Сообщение II: динамика циркуляции геновариантов вируса SARS-CoV-2. Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99 (4): 381–96. DOI: 10.36233/0372-9311-295
  2. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032
  3. Potter E., Marwick T.H. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc. Imaging. 2018; 11 (2 Pt 1): 260–74. DOI: 1016/j.jcmg.2017.11.017
  4. Дорошенко Д.А., Румянцев Ю.И., Конышева О.В., Саморукова А.С., Вечорко В.И., Адамян Л.В. Оценка глобальной продольной деформации левого желудочка методом спекл-трекинг эхокардиографии у беременных с COVID-19. Вестник РАМН. 2021; 76 (5S): 539–43. DOI: 10.15690/vramn1610
  5. Yang L.T., Kado Y., Nagata Y., Otani K., Otsuji Y., Takeuchi M. Strain imaging with a bull's-eye map for detecting significant coronary stenosis during dobutamine stress echocardiography. J. Am. Soc. Echocardiogr. 2017; 30 (2): 159–67.e1. DOI: 10.1016/j.echo.2016.10.011
  6. Дорошенко Д.А., Зубарев А.Р., Лапочкина О.Б. Cубклиническая систолическая дисфункция левого желудочка у беременных с преэклампсией без протеинурии. Возможности эхокардиографии в ранней диагностике. Медицинский совет. 2017; 7: 94–7.
  7. Сандриков В.А., Кулагина Т.Ю., Варданян А.А., Гаврилов А.В., Архипов И.В. Новый подход к оценке систолической и диастолической функции левого желудочка у больных с ишемической болезнью сердца. Ультразвуковая и функциональная диагностика. 2007; 1: 44–53.
  8. Константинов Б.А., Сандриков В.А., Кулагина Т.Ю. Деформация миокарда и насосная функция сердца (клиническая физиология кровообращения). М.: Фирма СТРОМ; 2006.
  9. Geyer H., Caracciolo G., Abe H., Wilansky S., Carerj S., Gentile F. et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 2010; 23: 351–69. DOI: 10.1016/j.echo.2010.02.015
  10. Cho K.I., Kim S.M., Shin M.S., Kim E.J., Cho E.J., Seo H.S. et al. Impact of gestational hypertension on left ventricular function and geometric pattern. Circ. J. 2011; 75: 1170–6. DOI: 10.1253/circj. cj-10-0763
  11. Biaggi P., Carasso S., Garceau P., Greutmann M., Gruner C., Tsang W. et al. Comparison of two different speckle tracking software systems: does the method matter? Echocardiography. 2011; 28 (5): 539–47. DOI: 10.1111/j.1540-8175.2011.01386.x
  12. Di Bella G., Gaeta M., Pingitore A., Oreto G., Zito C., Minutoli F. et al. Myocardial deformation in acute myocarditis with normal left ventricular wall motion – a cardiac magnetic resonance and 2-dimensional strain echocardiographic study. Circ. J. 2010; 74 (6): 1205–13. DOI: 10.1253/circj.cj-10-0017
  13. Takamura T., Dohi K., Onishi K., Tanabe M., Sugiura E., Nakajima H. et al. Left ventricular contraction- relaxation coupling in normal, hypertrophic, and failing myocardium quantified by speckle-tracking global strain and strain rate imaging. J. Am. Soc. Echocardiogr. 2010; 23 (7): 747–54. DOI: 10.1016/j.echo.2010.04.005
  14. Kocabay G., Muraru D., Peluso D., Cucchini U., Mihaila S., Padayattil-Jose S. et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev. Esp. Cardiol. (Engl. Ed). 2014; 67 (8): 651–8. DOI: 10.1016/j.rec
  15. Marwick T.H., Leano R.L., Brown J., Sun J.P., Hoffmann R., Lysyansky P. et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc. Imaging. 2009; 2 (1): 80–4. DOI: 10.1016/j.jcmg.2007.12.007
  16. Papadopoulou E., Kaladaridou A., Agrios J., Matthaiou J., Pamboukas C., Toumanidis S. Factors influencing the twisting and untwisting properties of the left ventricle during normal pregnancy. Echocardiography. 2014; 31 (2): 155–63. DOI: 10.1111/echo.12345
  17. Savu O., Jurcu¸t R., Giu¸scˇa S., van Mieghem T., Gussi I., Popescu B.A. et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circ. Cardiovasc. Imaging. 2012; 5 (3): 289–97. DOI: 10.1161/CIRCIMAGING.111.970012
  18. Sanfilippo F., Corredor C., Fletcher N., Tritapepe L., Lorini F.L., Arcadipane A. et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit. Care. 2018; 22 (1): 183. DOI: 10.1186/s13054018-2113-y
  19. Cotella J.I., Hasbani J., Hasbani E., Prado A. Abnormal longitudinal strain reduction of basal left ventricular segments in patients recovered of COVID-19. J. Cardiovasc. Echogr. 2022; 32 (2): 107–11. DOI: 10.4103/jcecho.jcecho_138_20
  20. Адамян Л.В., Вечорко В.И., Конышева О.В., Харченко Э.И., Дорошенко Д.А., Пивазян Л.Г. ПостCOVID-19 и репродуктивное здоровье (данные анкетирования и анализа результатов). Проблемы репродукции. 2023; 29 (1): 86–93. DOI: 10.17116/repro20232901186
  21. Picard M.H., Weiner R.B. Echocardiography in the time of COVID-19. J. Am. Soc. Echocardiogr. 2020; 33 (6): 674–5. DOI: 10.1016/j.echo.2020.04.011
****
  1. Akimkin G.A., Popova A.Yu., Khafizov K.F., Dubodelov D.V., Ugleva S.V., Semenenko T.A. et al. COVID-19: evolution of the pandemic in Russia. Report II: dynamics of the circulation of SARS-CoV-2 genetic variants. Journal of Microbiology, Epidemiology and Immunobiology. 2022; 99 (4): 381–96 (in Russ.). DOI: 10.36233/0372-9311-295
  2. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032
  3. Potter E., Marwick T.H. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc. Imaging. 2018; 11 (2 Pt 1): 260–74. DOI: 1016/j.jcmg.2017.11.017
  4. Doroshenko D.A., Rumyantsev Yu.I., Konisheva O.V., Samorukova A.S., Vechorko V.I., Adamyan L.V. Left ventricular global longitudinal strain by speckle tracking echocardiography in pregnant COVID-19 patients. Annals of the Russian Academy of Medical Sciences. 2021; 76 (5S): 539–43 (in Russ). DOI: 10.15690/vramn1610
  5. Yang L.T., Kado Y., Nagata Y., Otani K., Otsuji Y., Takeuchi M. Strain imaging with a bull's-eye map for detecting significant coronary stenosis during dobutamine stress echocardiography. J. Am. Soc. Echocardiogr. 2017; 30 (2): 159–67.e1. DOI: 10.1016/j.echo.2016.10.011
  6. Doroshenko D.A., Zubarev A.R., Lapochkina O.B. Subclinical systolic dysfunction of the left ventricle in preeclamptic women without proteinuria. The possibilities of echocardiography in early diagnosis. Medical Advice. 2017; 7: 94–7 (in Russ.). DOI: 10.21518/2079701X-2017-7-94-97
  7. Sandrikov V.A., Kulagina T.Yu., Vardanyan A.A., Gavrilov A.V., Arkhipov I.V. New approach to the estimation of the left ventricle diastolic and systolic functions in patients with the IHD. Ultrasound and Functional Diagnostics. 2007; 1: 44–53 (in Russ.).
  8. Konstantinov B.A., Sandrikov V.A., Kulagina T.Yu. Myocardial deformity and pumping function of the heart (clinical physiology of blood circulation). Moscow; 2006 (in Russ.).
  9. Geyer H., Caracciolo G., Abe H., Wilansky S., Carerj S., Gentile F. et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J. Am. Soc. Echocardiogr. 2010; 23: 351–69. DOI: 10.1016/j.echo.2010.02.015
  10. Cho K.I., Kim S.M., Shin M.S., Kim E.J., Cho E.J., Seo H.S. et al. Impact of gestational hypertension on left ventricular function and geometric pattern. Circ. J. 2011; 75: 1170–6. DOI: 10.1253/circj. cj-10-0763
  11. Biaggi P., Carasso S., Garceau P., Greutmann M., Gruner C., Tsang W. et al. Comparison of two different speckle tracking software systems: does the method matter? Echocardiography. 2011; 28 (5): 539–47. DOI: 10.1111/j.1540- 8175.2011.01386.x
  12. Di Bella G., Gaeta M., Pingitore A., Oreto G., Zito C., Minutoli F. et al. Myocardial deformation in acute myocarditis with normal left ventricular wall motion – a cardiac magnetic resonance and 2-dimensional strain echocardiographic study. Circ. J. 2010; 74 (6): 1205–13. DOI: 10.1253/circj.cj-10-0017
  13. Takamura T., Dohi K., Onishi K., Tanabe M., Sugiura E., Nakajima H. et al. Left ventricular contraction- relaxation coupling in normal, hypertrophic, and failing myocardium quantified by speckle-tracking global strain and strain rate imaging. J. Am. Soc. Echocardiogr. 2010; 23 (7): 747–54. DOI: 10.1016/j.echo.2010.04.005
  14. Kocabay G., Muraru D., Peluso D., Cucchini U., Mihaila S., Padayattil-Jose S. et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev. Esp. Cardiol. (Engl. Ed). 2014; 67 (8): 651–8. DOI: 10.1016/j.rec
  15. Marwick T.H., Leano R.L., Brown J., Sun J.P., Hoffmann R., Lysyansky P. et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc. Imaging. 2009; 2 (1): 80–4. DOI: 10.1016/j.jcmg.2007.12.007
  16. Papadopoulou E., Kaladaridou A., Agrios J., Matthaiou J., Pamboukas C., Toumanidis S. Factors influencing the twisting and untwisting properties of the left ventricle during normal pregnancy. Echocardiography. 2014; 31 (2): 155–63. DOI: 10.1111/echo.12345
  17. Savu O., Jurcu¸t R., Giu¸scˇa S., van Mieghem T., Gussi I., Popescu B.A. et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circ. Cardiovasc. Imaging. 2012; 5 (3): 289–97. DOI: 10.1161/CIRCIMAGING.111.970012
  18. Sanfilippo F., Corredor C., Fletcher N., Tritapepe L., Lorini F.L., Arcadipane A. et al. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: a systematic review and meta-analysis. Crit. Care. 2018; 22 (1): 183. DOI: 10.1186/s13054018-2113-y
  19. Cotella J.I., Hasbani J., Hasbani E., Prado A. Abnormal longitudinal strain reduction of basal left ventricular segments in patients recovered of COVID-19. J. Cardiovasc. Echogr. 2022; 32 (2): 107–11. DOI: 10.4103/jcecho.jcecho_138_20
  20. Adamyan L.V., Vechorko V.I., Konysheva O.V., Kharchenko E.I., Doroshenko D.A., Pivazyan L.G. PostCOVID-19 and reproductive health (data from the survey and analysis of the results). Russian Journal of Human Reproduction. 2023; 29 (1): 86–93 (in Russ.). DOI: 10.17116/repro20232901186
  21. Picard M.H., Weiner R.B. Echocardiography in the time of COVID-19. J. Am. Soc. Echocardiogr. 2020; 33 (6): 674–5. DOI: 10.1016/j.echo.2020.04.011

About Authors

  • Dmitriy A. Doroshenko, Cand. Med. Sci., Head of Department of Radiation and Functional Studies; ORCID
  • Yuriy I. Rumyantsev, Radiologist; ORCID
  • Elena A. Zubareva, Dr. Med. Sci., Chief of Chair of Radiation Diagnostics; ORCID
  • Valeriy I. Vechorko, Dr. Med. Sci., Chief Physician; ORCID
  • Valeriy A. Sandrikov, Dr. Med. Sci., Professor, Academician of RAS, Head of Department of Clinical Physiology, Instrumental and Radiation Diagnostics; ORCID

 If you found mistakes, select text and press Alt+A