Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Mathematical modeling of various deformations of the internal carotid artery

Authors: Kheteeva E.E.1 2, Vinogradov R.A.1 2, Zakharov Yu.N.3 4, Borisov V.G.3 4, Zyablova E.I.1 2, Derbilova V.P.1 2, Vinogradova E.R.1

Company:
1 Kuban State Medical University, Krasnodar, Russian Federation
2 Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1, Krasnodar, Russian Federation
3 Kemerovo State University, Kemerovo, Russian Federation
4 Federal Research Center for Information and Computational Technologies, Novosibirsk, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814- 6910-2023-20-4-362-370

UDC: 616.133.3-007.2

Link: Clinical Physiology of Blood Circulaiton. 2023; 4 (20): 362-370

Quote as: Kheteeva E.E., Vinogradov R.A., Zakharov Yu.N., Borisov V.G., Zyablova E.I., Derbilova V.P., Vinogradova E.R. Mathematical modeling of various deformations of the internal carotid artery. Clinical Physiology of Circulation. 2023; 20 (4): 362–70 (in Russ.). DOI: 10.24022/1814- 6910-2023-20-4-362-370

Received / Accepted:  07.09.2023 / 29.11.2023

Download
Full text:  

Abstract

Introduction. Morphological abnormalities of the extracranial internal carotid artery (ICA) are often found in the general population and range from 10 to 45%. The clinical significance of dolichoarteriopathies is due to their alleged association with a decrease in cerebral blood flow and the risk of stroke. Mathematical modeling has been actively developing, allowing to create a complete model of vessel geometry, taking into account individual characteristics.

Objective. To study the features of blood flow in various variants of pathological tortuosity of the internal carotid artery by mathematical modeling.

Material and methods. CT scans of 36 internal carotid arteries with a diagnosis of “Pathological tortuosity of the internal carotid artery” according to the basic classification of J. Weibel & W. Fields (1965) were studied. Three-dimensional nonstationary periodic blood flow in the convoluted internal carotid artery was modeled using computational fluid dynamics methods. ClearCanvas, SimVascular, and MeshMixer were used to construct a geometric model of the vessel and the velocity characteristics of blood flow to construct computational grids. The SimVascular application was used to perform numerical calculations. In the studied arteries, the diameter in cross sections was measured, and the distribution of wall shear stress was analyzed. Statistical processing of the results was carried out using the IBM SPSS Statistics 26 application software package. Due to the incorrect distribution of the sample, nonparametric methods of statistical analysis were used. The threshold value of the significance level is assumed to be 0.05. The reliability of the differences between the groups was assessed using the Kraskel–Wallis criterion.

Results..  The results of our modeling demonstrate the heterogeneity of the flow and its characteristics in a convoluted vessel. During the calculation of new hemodynamic variables, we found that the excess of peak wall shear stress is observed in all types of deformations. It is noteworthy that stroke or transient ischemic attack have been observed in patients with various deformities of the ICA.

Conclusions. The method of mathematical modeling makes it possible to assess hemodynamic disorders in deformations of the internal carotid artery. The method of computational fluid dynamics shows significant heterogeneity of the blood flow in case of deformations of the internal carotid artery. A critical increase of the wall shear stress can be observed in any deformation of the internal carotid artery.

References

  1. Национальные российские рекомендации по ведению пациентов с заболеваниями брахиоцефальных артерий. Москва; 2013. http://angiosurgery.org/recommendations/2013/recommendations_brachiocephalic.pdf (дата доступа 19.08.2023)
  2. Казанчян П.О., Валиков Е.А. Патологические деформации внутренних сонных артерий. М.; 2005.
  3. Хорев Н.Г., Беллер А.В., Шойхет Я.Н., Куликов В.П. Хирургическое лечение патологической извитости внутренней сонной артерии у детей. Барнаул; 2004. Khorev N.G., Beller A.V., Shoykhet I.N., Kulikov V.P. Surgical treatment of pathological tortuosity of the internal carotid artery in children. Barnaul; 2004 (in Russ.).
  4. Ballotta E., Thiene G., Baracchini C., Ermani M., Militello C., Da Giau G. et al. Surgical vs medical treatment for isolated internal carotid artery elongation with coiling or kinking in symptomatic patients: a prospective randomized clinical study. J. Vasc. Surg. 2005; 42 (5): 838–46. DOI: 10. 1016/j.jvs.2005.07.034
  5. Кирсанов Р.И., Куликов В.П. Винтовое (вращательно-поступательное) движение крови в сердечно- сосудистой системе. Успехи физиологических наук. 2013; 44 (2): 62–78.
  6. Синельников Ю.С., Арутюнян В.Б., Породиков А.А. Применение математического моделирования для оценки результатов формирования системно-легочных анастомозов. Патология кровообращения и кардиохирургия. 2020; 24 (3): 45–61. DOI: 10.21688/1681-3472-2020-3-45-61
  7. Борисов В.Г., Захаров Ю.Н., Шокин Ю.И., Овчаренко Е.А., Клышников К.Ю., Сизова И.Н. и др. Численный метод прогнозирования гемодинамических эффектов в сосудистых протезах. Сибирский журнал вычислительной математики. 2019; 22 (4): 399–414. DOI: 10.15372/SJNM20190402
  8. Дербилова В.П., Виноградов Р.А., Захаров Ю.Н., Борисов В.Г., Трегубенко К.А., Мещерякова О.М. и др. Компьютерное моделирование гемодинамических показателей в нормальной бифуркации общей сонной артерии. Ангиология и сосудистая хирургия. 2022; 28 (1): 29–35. DOI: 10.33029/1027-6661-2022-28-1-29-35
  9. Коссович Л.Ю., Морозов К.М., Павлова О.Е. Биомеханика сонной артерии человека с патологической извитостью. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2013; 13 (3): 76–82. DOI: 10.18500/1816-9791-2013-13-3-76-82
  10. Павлова О.Е., Иванов Д.В., Грамакова А.А., Морозов К.М., Суслов И.И. Гемодинамика и механическое поведение бифуркации сонной артерии с патологической извитостью. Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2010; 10 (2): 66–73. DOI: 10.18500/1816-9791-2010-10-2-66-73
  11. Wang L., Zhao F., Wang D., Hu S., Liu J., Zhou Z. et al. Pressure drop in tortuosity/kinking of the internal carotid artery: simulation and clinical investigation. Biomed. Res. Int. 2016. DOI: 10.1155/2016/2428970
  12. Sharzehee M., Fatemifar F., Han H.C. Computational simulations of the helical buckling behavior of blood vessels. Int. J. Numer. Method. Biomed. Eng. 2019; 35 (12): 3277. DOI: 10.1002/cnm.3277
  13. Younis H.F., Kaazempur-Mofrad M.R., Chan R.C., Isasi A.G., Hinton D.P., Chau A.H. et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 2004; 3 (1): 17–32. DOI: 10.1007/s10237-004-0046-7
  14. Хетеева Э.Э., Виноградова Э.Р., Зяблова Е.И., Мирзаева М.А., Дербилова В.П. Индекс извитости внутренней сонной артерии как возможный предиктор инсульта. Диагностическая и интервенционная радиология. 2023; 17 (2): 6–12. DOI: 10.25512/DIR.2023.17.2.01
****
  1. National guidelines for the management of patients with brachiocephalic artery disease. Moscow; 2013. http://angiosurgery.org/recommendations/2013/recommendations_brachiocephalic.pdfdf (in Russ.) (accessed August 19, 2023)
  2. Kazanchyan P.O., Valikov E.A. Pathological deformities of internal carotid arteries. Moscow; 2005 (in Russ.).
  3. Khorev N.G., Beller A.V., Shoykhet I.N., Kulikov V.P. Surgical treatment of pathological tortuosity of the internal carotid artery in children. Barnaul; 2004 (in Russ.).
  4. Ballotta E., Thiene G., Baracchini C., Ermani M., Militello C., Da Giau G. et al. Surgical vs medical treatment for isolated internal carotid artery elongation with coiling or kinking in symptomatic patients: a prospective randomized clinical study. J. Vasc. Surg. 2005; 42 (5): 838–46. DOI: 10. 1016/j.jvs.2005.07.034
  5. Kirsanov R.I., Kulikov V.P. Helical (rotational-translational) movement of blood in the cardiovascular system. Successes of the Physiological Sciences. 2013; 44 (2): 62–78 (in Russ.).
  6. Sinelnikov Yu.S., Harutyunyan V.B., Porodikov A.A. The use of mathematical modeling to evaluate the results of the formation of systemic pulmonary anastomoses. Pathology of Blood Circulation and Cardiac Surgery. 2020; 24 (3): 45–61 (in Russ.). DOI: 10.21688/1681-3472-2020-3-45-61
  7. Borisov V.G., Zakharov Yu.N., Shokin Yu.I., Ovcharenko E.A., Klishnikov K.Yu., Sizova I.N. et al. A numerical method for predicting hemodynamic effects in vascular prostheses. Siberian Mathematical Journal. 2019; 22 (4): 399–414 (in Russ.). DOI: 10.15372/SJNM20190402
  8. Derbilova V.P., Vinogradov R.A., Zakharov Yu.N., Borisov V.G., Tregubenko K.Y., Mesheryakova O.M. Computer simulation of hemodynamic parameters in the normal bifurcation of the common carotid artery. Angiology and Vascular Surgery. 2022: 28 (1): 29–35 (in Russ.). DOI: 10.33029/1027-6661-2022-28-1-29-35
  9. Kossovich L.Yu., Morozov K.M., Pavlova O.E. Biomechanics of the carotid artery of a person with pathological tortuosity. News of the Saratov University. A new series. Series: Mathematics. Mechanics. Computer Science. 2013; 13 (3): 76–82 (in Russ.). DOI: 10.18500/1816-9791-2013-13-3-76-82
  10. Pavlova O.E., Ivanov D.V., Gromakova A.A., Morozov K.M., Suslov I.I. Hemodynamics and mechanical behavior of carotid artery bifurcation with pathological tortuosity. News of the Saratov University. A new series. Series: Mathematics. Mechanics. Computer Science. 2010; 10 (2): 66–73 (in Russ.). DOI 10.18500/1816-9791-2010-10-2-66-73
  11. Wang L., Zhao F., Wang D., Hu S., Liu J., Zhou Z. et al. Pressure drop in tortuosity/kinking of the internal carotid artery: simulation and clinical investigation. Biomed. Res. Int. 2016. DOI: 10.1155/2016/2428970
  12. Sharzehee M., Fatemifar F., Han H.C. Computational simulations of the helical buckling behavior of blood vessels. Int. J. Numer. Method. Biomed. Eng. 2019; 35 (12): 3277. DOI: 10.1002/cnm.3277
  13. Younis H.F., Kaazempur-Mofrad M.R., Chan R.C., Isasi A.G., Hinton D.P., Chau A.H. et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 2004; 3 (1): 17–32. DOI: 10.1007/s10237-004-0046-7
  14. Kheteeva E.E., Vinogradova E.R., Zyablova E.I., Mirzaeva M.A., Derbilova V.P. Tortuosity index of internal carotid artery as a possible stroke predictor. Journal Diagnostic & Interventional Radiology. 2023; 17 (2): 6–12 (in Russ.). DOI: 10.25512/DIR.2023.17.2.01

About Authors

  • Elina E. Kheteeva, Cardiovascular Surgeon, Laboratory Assistant; ORCID
  • Roman A. Vinogradov, Dr. Med. Sci., Professor of Chair of Surgery, Head of Department of Vascular Surgery; ORCID
  • Yuriy N. Zakharov, Dr. Phys.-Math. Sci., Professor, Head of Laboratory, Chief of Chair; ORCID
  • Vladimir G. Borisov, Dr. Phys.-Math. Sci., Senior Researcher; ORCID
  • Elena I. Zyablova, Head of Radiology Department; ORCID
  • Viktoriya P. Derbilova, Cardiovascular Surgeon; ORCID
  • Elvira R. Vinogradova, Student; ORCID

 If you found mistakes, select text and press Alt+A