Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Perioperative risk factors for stroke in patients after left ventricular geometric reconstruction

Authors: Lobacheva G.V., Alshibaya M.D., Mamalyga M.L., Maksimova A.G.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2024-21-1-18-35

UDC: 616.831-005+616.124.2]-089-06

Link: Clinical Physiology of Blood Circulaiton. 2024; 21 (1): 18-35

Quote as: Lobacheva G.V., Alshibaya M.D., Mamalyga M.L., Maksimova A.G. Perioperative risk factors for stroke in patients after left ventricular geometric reconstruction. Clinical Physiology of Circulation. 2024; 21 (1): 18–35 (in Russ.). DOI: 10.24022/1814-6910-2024-21-1-18-35

Received / Accepted:  17.01.2024 / 15.02.2024

Download
Full text:  

Abstract

Objective. Identification of the main prognostic risk factors for acute cerebral disorders and their threshold values in the early postoperative period after left ventricular geometric reconstruction (LVGR).

Material and methods. A retrospective case-control study included 52 patients who underwent LVGR. Group 1 – patients with uncomplicated postoperative period, Group 2 – patients with early postoperative stroke. Data were collected before the operation, on admission to the ICU, and on the 3rd day of the postoperative period.

Results. Cardiac output in the early postoperative period decreases by 26% and 14% in patients of groups 1 and 2, respectively (p < 0.05). Decreased cardiac output against the background of decreased oxygen capacity of blood leads to decreased oxygen delivery by 36.6% in group 1 and 33.8% in group 2 (p < 0.05). The following disorders of colloid- osmotic and water-electrolyte status in ICU were found to increase the risk of stroke in the early postoperative period: hypernatremia (OR = 1.46, p = 0.017), hyperlactatemia (OR = 1.46, p = 0.023), hyperglycemia (OR = 1.35, p=0.032), plasma hyperosmolarity (OR = 1.16, p = 0.009), hypoalbuminemia (OR = 0.75, p = 0.045). In this connection according to the results of one-factor analysis a 1 mmol/L increase in sodium at levels greater than 148.5 mmol/L increases stroke risk 19.8-fold (p = 0.012); a 1 mmol/L increase in glucose at levels greater than 18 mmol/L increases stroke risk 7-fold (p = 0.031); increase in lactate by 1 mmol/L at levels greater than 11.8 mmol/L – 12-fold (p = 0.031); increase in osmolarity by 1 mosmol/kg at levels greater than 310 mosmol/kg – 63-fold (p = 0.001); decrease in albumin by 1 g/L at levels less than 30.5 g/L – 10.5-fold (p = 0.018).

Conclusion. The parameters of water-electrolyte and colloid-oncotic state parameters that can be used as a threshold value for predicting the risk of stroke in clinical decision making in patients were determined. Thus, the threshold maximum value of sodium was 148.5 mmol/L, glucose – 18.1 mmol/L, plasma osmolarity – 310 mosm/kg.

References

  1. Pahwa S., Bernabei A., Schaff H., Stulak J., Greason K., Pochettino A. et al. Impact of postoperative complications after cardiac surgery on long-term survival. J. Card. Surg. 2021; 36 (6): 2045–2052. DOI: 10.1111/jocs.15471
  2. Chen C.C., Chen T.H., Tu P.H., Wu V.C., Yang C.H., Wang A.Y. et al. Long-Term outcomes for patients with stroke after coronary and valve surgery. Ann. Thorac. Surg. 2018; 106 (1): 85–91. DOI: 10.1016/j.athoracsur.2018.01.067
  3. Бокерия Л.А., Голухова Е.З., Полунина А.Г., Бегачев А.В., Лефтерова Н.П. Когнитивные нарушения у кардиохирургических больных: неврологические корреляты, диагностические подходы и клиническое значение. Креативная кардиология. 2007; 1-2: 231–243.
  4. Gaudino M., Angiolillo D.J., Di Franco A., Capodanno D., Bakaeen F., Farkouh M.E. et al. Stroke after coronary artery bypass grafting and percutaneous coronary intervention: incidence, pathogenesis, and outcomes. J. Am. Heart Assoc. 2019; 8 (13): е013032. DOI: 10.1161/ jaha.119.013032
  5. Caldas J.R., Panerai R.B., Bor-Seng-Shu E., Ferreira G.S.R., Camara L., Passos R.H. et al. Dynamic cerebral autoregulation: A marker of post-operative delirium? Clinical Neurophysiology: Official Journal of the International Federation of Clin. Neurophys. 2019; 130 (1): 101–108. DOI: 10.1016/j.clinph.2018.11.008
  6. Nakano M., Nomura Y., Whitman G., Sussman M., Schena S., Kilic A. et al. Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery. Br. J. Anaesth. 2021; 126 (5): 967–974. DOI: 10.1016/j.bja.2020.12.043
  7. Фарзутдинов А.Ф., Затевахина М.В. Патофизиология постинфарктной аневризмы левого желудочка. Анестезиология и реаниматология. 2016; 61 (4): 244–248. DOI: 10.18821/0201-7563-2016-4-244-248
  8. Ye S., Huynh Q., Potter E.L. Cognitive dysfunction in heart failure: pathophysiology and implications for patient management. Curr. Heart Fail. Rep. 2022; 19: 303–315. DOI: 10.1007/s11897-022-00564-z
  9. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28 (1): 1–39. DOI: 10.1016/j.echo.2014.10.003
  10. Leong X.F., Cheng M., Jong B., Hwang N.C., Roscoe A. Sodium abnormalities in cardiac surgery with cardiopulmonary bypass in adults: a narrative review. J. Cardiothorac. Vasc. Anesth. 2021; 35 (11): 3374–3384. DOI: 10.1053/j.jvca.2020.07.047
  11. Cusack B., Buggy D.J. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020; 20 (9): 321–328. DOI: 10.1016/j. bjae.2020.04.006
  12. Ершов В.И., Чирков А.Н., Гончар-Зайкин А.П., Лященко С.Н., Лозинская Т.Ю., Гумалатова Н.В. и др. Математическое моделирование ишемического инсульта. Неврология, нейропсихиатрия, психосоматика. 2019; 11 (4): 38–43. DOI: 10.14412/2074-2711-2019-4-38-43
  13. Faura J., Bustamante A., Miró-Mur F., Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J. Neuroinflammation. 2021; 18 (1): 127. DOI: 10.1186/s12974-021-02177-0
  14. Ершов В.И., Чирков А.Н. Алгоритмы коррекции водно-электролитных нарушений у пациентов с тяжелым ишемическим инсультом. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017; 117 (3–2): 31–34. DOI: 10.17116/jnevro20171173231-34
  15. Lambeck J., Hieber M., Dreßing A., Niesen W.D. Central pontine myelinosis and osmotic demyelination syndrome. Dtsch Arztebl. Int. 2019; 116 (35–36): 600–606. DOI: 10.3238/arztebl.2019.0600
  16. Ferrari F., Moretti A., Villa R.F. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural. Regen. Res. 2022; 17 (2): 292–299. DOI: 10.4103/1673-5374.317959
  17. Mestrom E.H.J., van der Stam J.A., Te Pas M.E., van der Hoeven J.G., van Riel N.A.W., Bindels A.J.G.H. et al. Sodium intake and decreased sodium excretion in ICU-acquired hypernatremia: A prospective cohort study. J. Crit. Care. 2021; 63: 68–75. DOI: 10.1016/j. jcrc.2021.02.002
  18. Доян Ю.И., Кичерова О.А., Рейхерт Л.И., Ревнивых М.Ю., Рейхерт Л.В. Дисциркуляторная энцефалопатия и ишемическая болезнь сердца: патогенетические аспекты коморбидности. Медицинская наука и образование Урала. 2018; 19 (94): 165–167.
  19. Govender P., Tosh W., Burt C., Falter F. Evaluation of increase in intraoperative lactate level as a predictor of outcome in adults after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2020; 34 (4): 877–884. DOI: 10.1053/j.jvca.2019.10.039
  20. Laimoud M., Maghirang M., Alanazi M., Al-Mutlaq S.M., Althibait S.A., Alanazi B. et al. Predictors and clinical outcomes of post-coronary artery bypass grafting cerebrovascular strokes. Egypt Heart J. 2022; 74 (1): 76. DOI: 10.1186/s43044-022-00315-4
  21. Algarni K.D. The effect of hyperlactatemia timing on the outcomes after cardiac surgery. Cardiothorac. Surg. 2020; 28 (18). DOI: 10.1186/ s43057-020-00029-w
  22. Martha S.R., Collier L.A., Davis S.M., Seifert H.A., Leonardo C.C., Ajmo C.T. Jr et al. Translational Evaluation of Acid/Base and Electrolyte Alterations in Rodent Model of Focal Ischemia. J. Stroke Cerebrovasc. Dis. 2018; 27 (10): 2746–2754. DOI: 10.1016/j.jstrokecerebrovasd is.2018.05.045
  23. Xuefang Liu, Yanlin Feng, Xinyu Zhu, Ying Shi, Manting Lin, Xiaoyan Song et al. Serum anion gap at admission predicts all-cause mortality in critically ill patients with cerebral infarction: evidence from the MIMIC-III database. Biomarkers. 2020; 25 (8): 725–732. DOI: 10.1080/1354750x.2020.1842497
  24. Tóth O., Menyhárt Á., Frank R., Hantosi D., Farkas E., Bari F. Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology (Basel). 2020; 9 (12): 460. DOI: 10.3390/biology9120460
  25. Van Putten M.J.A.M., Fahlke C., Kafitz K.W., Hofmeijer J., Rose C.R. Dysregulation of astrocyte ion homeostasis and its relevance for stroke-induced brain damage. Int. J. Mol. Sci. 2021; 22 (11): 5679. DOI: 10.3390/ijms22115679
  26. Yuan S.M. Acute kidney injury after cardiac surgery: risk factors and novel biomarkers. Braz. J. Cardiovasc. Surg. 2019; 34 (3): 352–360. DOI: 10.21470/1678-9741-2018-0212
****
  1. Pahwa S., Bernabei A., Schaff H., Stulak J., Greason K., Pochettino A. et al. Impact of postoperative complications after cardiac surgery on long-term survival. J. Card. Surg. 2021; 36 (6): 2045–2052. DOI: 10.1111/jocs.15471
  2. Chen C.C., Chen T.H., Tu P.H., Wu V.C., Yang C.H., Wang A.Y. et al. Long-Term outcomes for patients with stroke after coronary and valve surgery. Ann. Thorac. Surg. 2018; 106 (1): 85–91. DOI: 10.1016/j.athoracsur.2018.01.067
  3. Bockeria L.A., Golukhova E.Z., Polunina A.G., Begachev A.V., Leftereva N.P. Cognitive impairment in cardiac surgery patients: neurological correlates, diag-nostic approaches and clinical significance. Creative Cardiology. 2007; 1-2: 231–243 (in Russ.).
  4. Gaudino M., Angiolillo D.J., Di Franco A., Capodanno D., Bakaeen F., Farkouh M.E. et al. Stroke after coronary artery bypass grafting and percutaneous coronary intervention: incidence, pathogenesis, and outcomes. J. Am. Heart Assoc. 2019; 8 (13): е013032. DOI: 10.1161/ jaha.119.013032
  5. Caldas J.R., Panerai R.B., Bor-Seng-Shu E., Ferreira G.S.R., Camara L., Passos R.H. et al. Dynamic cerebral autoregulation: A marker of post-operative delirium? Clinical Neurophysiology: Official Journal of the International Federation of Clin. Neurophys. 2019; 130 (1): 101–108. DOI: 10.1016/j.clinph.2018.11.008
  6. Nakano M., Nomura Y., Whitman G., Sussman M., Schena S., Kilic A. et al. Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery. Br. J. Anaesth. 2021; 126 (5): 967–974. DOI: 10.1016/j.bja.2020.12.043
  7. Farzutdinov A.F., Zatevachina M.V. Pathophysiology of left ventricular post infarction aneurysm. Anesthesiology and Reanimatology. 2016; 61 (4): 244–248 (in Russ.).
  8. Ye S., Huynh Q., Potter E.L. Cognitive dysfunction in heart failure: pathophysiology and implications for patient management. Curr. Heart Fail. Rep. 2022; 19: 303–315. DOI: 10.1007/s11897-022-00564-z
  9. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015; 28 (1): 1–39. DOI: 10.1016/j.echo.2014.10.003
  10. Leong X.F., Cheng M., Jong B., Hwang N.C., Roscoe A. Sodium abnormalities in cardiac surgery with cardiopulmonary bypass in adults: a narrative review. J. Cardiothorac. Vasc. Anesth. 2021; 35 (11): 3374–3384. DOI: 10.1053/j.jvca.2020.07.047
  11. Cusack B., Buggy D.J. Anaesthesia, analgesia, and the surgical stress response. BJA Educ. 2020; 20 (9): 321–328. DOI: 10.1016/j. bjae.2020.04.006
  12. Ershov V.I., Chirkov A.N., Gonchar-Zaykin A.P., Liascenko S.N., Lozinskaya T.Y., Gumalatova N.V. et al. Mathematical modeling of ischemic stroke. Neurology, Neuropsychiatry, Psychosomatics. 2019; 11 (4): 38–43 (in Russ.). DOI: 10.14412/2074-2711-2019-4-38-43
  13. Faura J., Bustamante A., Miró-Mur F., Montaner J. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J. Neuroinflammation. 2021; 18 (1): 127. DOI: 10.1186/s12974-021-02177-0
  14. Ershov V.I., Chirkov A.N. Algorithms of the correction of fluid and electrolyte disorders in patients with severe ischemic stroke. S.S. Korsakov Journal of Neurology and Psychiatry. 2017; 117 (3–2): 31–34 (in Russ.). DOI: 10.17116/jnevro20171173231-34
  15. Lambeck J., Hieber M., Dreßing A., Niesen W.D. Central pontine myelinosis and osmotic demyelination syndrome. Dtsch Arztebl. Int. 2019; 116 (35–36): 600–606. DOI: 10.3238/arztebl.2019.0600
  16. Ferrari F., Moretti A., Villa R.F. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural. Regen. Res. 2022; 17 (2): 292–299. DOI: 10.4103/1673-5374.317959
  17. Mestrom E.H.J., van der Stam J.A., Te Pas M.E., van der Hoeven J.G., van Riel N.A.W., Bindels A.J.G.H. et al. Sodium intake and decreased sodium excretion in ICU-acquired hypernatremia: A prospective cohort study. J. Crit. Care. 2021; 63: 68–75. DOI: 10.1016/j. jcrc.2021.02.002
  18. Doyan Y.I., Kicherova O.A., Reyhert L.I., Revnivyh M.Y., Reyhert L.V. Dyscirculatory encephalopathy and ischemic heart disease: pathogenetic aspects of comorbidity. Medical Science and Education of the Urals. 2018; 19 (94): 165–167 (in Russ.).
  19. Govender P., Tosh W., Burt C., Falter F. Evaluation of increase in intraoperative lactate level as a predictor of outcome in adults after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2020; 34 (4): 877–884. DOI: 10.1053/j.jvca.2019.10.039
  20. Laimoud M., Maghirang M., Alanazi M., Al-Mutlaq S.M., Althibait S.A., Alanazi B. et al. Predictors and clinical outcomes of post-coronary artery bypass grafting cerebrovascular strokes. Egypt Heart J. 2022; 74 (1): 76. DOI: 10.1186/s43044-022-00315-4
  21. Algarni K.D. The effect of hyperlactatemia timing on the outcomes after cardiac surgery. Cardiothorac. Surg. 2020; 28 (18). DOI: 10.1186/ s43057-020-00029-w
  22. Martha S.R., Collier L.A., Davis S.M., Seifert H.A., Leonardo C.C., Ajmo C.T. Jr et al. Translational Evaluation of Acid/Base and Electrolyte Alterations in Rodent Model of Focal Ischemia. J. Stroke Cerebrovasc. Dis. 2018; 27 (10): 2746–2754. DOI: 10.1016/j.jstrokecerebrovasd is.2018.05.045
  23. Xuefang Liu, Yanlin Feng, Xinyu Zhu, Ying Shi, Manting Lin, Xiaoyan Song et al. Serum anion gap at admission predicts all-cause mortality in critically ill patients with cerebral infarction: evidence from the MIMIC-III database. Biomarkers. 2020; 25 (8): 725–732. DOI: 10.1080/1354750x.2020.1842497
  24. Tóth O., Menyhárt Á., Frank R., Hantosi D., Farkas E., Bari F. Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology (Basel). 2020; 9 (12): 460. DOI: 10.3390/biology9120460
  25. Van Putten M.J.A.M., Fahlke C., Kafitz K.W., Hofmeijer J., Rose C.R. Dysregulation of astrocyte ion homeostasis and its relevance for stroke-induced brain damage. Int. J. Mol. Sci. 2021; 22 (11): 5679. DOI: 10.3390/ijms22115679
  26. Yuan S.M. Acute kidney injury after cardiac surgery: risk factors and novel biomarkers. Braz. J. Cardiovasc. Surg. 2019; 34 (3): 352–360. DOI: 10.21470/1678-9741-2018-0212

About Authors

  • Galina V. Lobacheva, Dr. Med. Sci., Professor, Head of the Department of Reanimation and Intensive Care; ORCID
  • Mikhail M. Alshibaya, Dr. Med. Sci., Professor, Head of the Department of Surgical Treatment of Coronary Heart Disease; ORCID
  • Maksim L. Mamalyga, Dr. Med. Sci., Leading Researcher; ORCID
  • Anna G. Maksimova, Anesthesiologist-Intensivist; ORCID

 If you found mistakes, select text and press Alt+A