Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Microcirculation and oxygen regime of skin flap tissues

Authors: Bagyan A.R.1, Malinin A.A.1, Tsygankov Yu.M.1, Chomaeva A.A.2

Company:
1 Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
2 Treatment and Rehabilitation Center, Cherkessk, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2024-21-1-56-68

UDC: 616-003.93

Link: Clinical Physiology of Blood Circulaiton. 2024; 21 (1): 45-55

Quote as: Bagyan A.R, Malinin A.A., Tsygankov Yu.M., Chomaeva A.A. Microcirculation and oxygen regime of skin flap tissues. Clinical Physiology of Circulation. 2024; 21 (1): 56–68 (in Russ.). DOI: 10.24022/1814-6910-2024-21-1-56-68

Received / Accepted:  15.02.2024 / 04.03.2024

Download
Full text:  

Abstract

Objective. To study the oxygen regime of tissues on various models of blood supply to skin flaps in the experiment as a factor in predicting the state of its viability.

Material and methods. Experimental studies were conducted on 23 white rats. To achieve the goal, 4 experimental models of a skin flap were created with conditions of its engraftment or death. The study of the oxygen regime of tissues was carried out on an oximeter TCM 400 from Radiometer (Denmark), which is designed for transcutaneous measurement of oxygen tension (TcPO2) in capillary blood. Studies were carried out for 14 days after the operation until the visual determination of the outcome of the operation.

The design of the experiment consisted in studying the oxygen regime of tissues at rest and after oxygen load depending on the state of blood supply to the tissues of the skin flap in dynamics to determine quantitative criteria for predicting its viability or necrosis, which predetermined the surgical tactics of treatment.

Results. It has been established that the oxygen regime indices in the skin flap tissues are directly dependent on the state of capillary blood flow. Zero oxygen tension values are the main indirect criterion for the absence of blood flow and a poor prognostic predictor of tissue death and necrosis. Short-term zero values of TcPO2 cannot be a criterion for tissue death. A prognostic conclusion about subsequent death of the skin flap can only be made with dynamic observation for 2–3 days after recording zero values.

The statistical significance of differences in the oxygen regime indices of the skin flap tissues for the 1st, 2nd and 4th experimental models using the Kruskal–Wallis criterion was revealed on the 2nd and 3rd days after the operation (р=0.0001).

Conclusion. As a result, the dynamics of TcPO2 indicators is significant on the 2–3 day of the study for predicting the viability of the skin flap and can be used in the clinic.


References

  1. Богданов С.Б., Аладьина В.А., Марченко Д.Н., Поляков А.В., Мелконян К.И., Гилевич И.В., Богданова Ю.А. Хирургические аспекты приживления полнослойного кожного аутотрансплантата на гранулирующую рану. Инновационная медицина Кубани. 2020; 18 (2): 41–45. DOI: 10.35401/2500-0268-2020-18-2-41-45
  2. Богданов С.Б., Аристов А.М., Аладьина В.А., Куринный С.Н., Поляков А.В., Блаженко А.Н. и др. Актуальность выполнения пластики по Красовитову при травматических отслойках кожи кисти. Пластическая хирургия и эстетическая медицина. 2021; 1: 44–51. DOI: 10.17116/plast.hirurgia202101144
  3. Байтингер В.Ф., Селянинов К.В. Микроциркуляторное русло в реперфузируемых лоскутах: современные возможности коррекции гемодинамических расстройств (часть I). Вопросы реконструктивной и пластической хирургии. 2020; 23 (2): 29–40. DOI: 10.17223/1814147/73/04
  4. Малинин А.А., Прядко С.И., Пескова А.С., Папиташвили В.Г., Чомаева А.А. Тракционный метод пластики кожной раны при резекционных операциях у больных со слоновостью конечностей. Флебология. 2022; 16 (4): 277–286.
  5. Малинин А.А., Багян А.Р., Сергеев С.Ю. Результаты хирургического лечения и осложнения после резекционно-пластических операций при деформирующей форме лимфедемы. Клиническая физиология кровообращения. 2023; 20 (4): 390–402. DOI: 10.24022/1814-6910-2023-20-4-390-402
  6. Chehelcheraghi F., Eimani H., Sadraie S.H., Torkaman G., Amini A., Shemshadi H., Majd H.A. Improved viability of random pattern skin flaps with the use of bone marrow mesenchymal-derived stem cells and chicken embryo extract. Iran. J. Basic. Med. Sci. 2015; 18: 764–772.
  7. Lin B., Lin Y., Lin D., Cao B. Effects of bezafibrate on the survival of random skin flaps in rats. J. Reconstr. Microsurg. 2016; 32: 395–401.
  8. McFarlane R.M., Deyoung G., Henry R.A. The design of a pedicle flap in the rat to study necrosis and its prevention. Plast. Reconstr. Surg. 1965; 35: 177–182.
  9. Camargo C.P., Margarido N.F., Guandelini E., Vieira G.A., Jacomo A.L., Gemperli R. Description of a new experimental model skin flap for studying skin viability in rats. Acta Cir. Bras. 2014; 29: 166–170.
  10. Esteves G.R., Junior I.E., Masson I.F.B., Machado A.F.P., Oliveira M.C.D., Baldan C.S. et al. Photobiomodulation effect in tumoral necrosis factor-alpha (TNF-alpha) on the viability of random skin flap in rats. Lasers Med. Sci. 2022; 37: 1495–1501.
  11. Малинин А.А., Прядко С.И., Пескова А.С., Чомаева А.А. Тактика лечения трофических венозных язв с хирургическим дебридментом и одномоментной аутодерматопластикой. Флебология. 2022; 16 (2): 130–139.
  12. Валиев А.А., Хасанов Р.Ш., Галимова Л.Л., Гатауллин И.Г. Современные методы оценки жизнеспособности стенки кишки (обзор литературы). Колопроктология. 2023; 22 (3): 140–148. DOI: 10.33878/2073-7556-2023-22-3-140-148
  13. Abe Y., Hashimoto I., Goishi K., Kashiwagi K., Yamano M., Nakanishi H. Transcutaneous pCO2 measurement at low temperature for reliable and continuous free flap monitoring. Plastic Reconstr. Surg. Glob. Open. 2013; 1 (2): 1–8. DOI: 10.1097/GOX.0b013e3182936cd0
  14. Halani S.H., Hembd A.S., Li X., Kirby B., Beard C.C., Haddock N.T., Suszynski T.M. Flap monitoring using transcutaneous oxygen or carbon dioxide measurements. J. Hand. Microsurg. 2022; 14: 10–18. DOI: 10.1055/ s-0040-1718862
  15. Михайлов И.А., Мороз В.Ю., Юденич A.A. Роль транскутанной оксиметрии после аутотрансплантации тканевых комплексов на сосудистой ножке. Вестник новых медицинских технологий. 2008; XV (2): 137–139.
  16. Малыхина И.Ф., Неробеев А.И., Добродеев А.С., Вербо Е.В., Гарелик Е.И., Салихов К.С. Тканевая оксиметрия: оценка жизнеспособности свободных лоскутов при реконструкции головы и шеи. Вопросы реконструктивной и пластической хирургии. 2015; 18 (2): 11–24.
  17. Van Der Walt J.C., Perks T.J., Zeeman B.J.V., Bruce-Chwatt A.J., Graewe F.R. Modified charles procedure using negative pressure dressings for primary lymphe-dema: a functional assessment. Ann. Plast. Surg. 2009; 62 (6): 669–675. DOI: 10.1097/SAP.0b013e318180cd24
  18. Karonidis A., Chen H.C. Preservation of toes in advanced lymphedema an important step in the control of infection. Ann. Plast. Surg. 2010; 64 (4): 446–450. DOI: 10.1097/SAP.0b013e3181b30416
  19. Ciudad P., Escandón J.M., Manrique O.J., Bustos V.P. Lessons learnt from an 11-year experience with lymphatic surgery and a systematic review of reported complications: technical considerations to reduce morbidity. Arch. Plast. Surg. 2022; 49 (02): 227–239. DOI: 10.21037/ gs-23-247.10.1055/s-0042-1744412
  20. Karlsson T., Mackie H., Koelmeyer L., Heydon-White A., Ricketts R., Toyer K. et al. Liposuction for advanced lymphedema in a multidisciplinary team setting in Australia: 5-year follow-up. Plast. Reconstr. Surg. 2024; 153 (2): 482–491. DOI: 10.1097/PRS. 0000000000010612
  21. Gaxiola-García M.A., Escandón J., Manrique O.J., Skinner K.A., Contreras B.H.K. Surgical treatment for primary lymphedema: a systematic review of the literature. Arch. Plast. Surg. 2024; 51 (02): 212–233. DOI: 10.1055/a-2253-9859
  22. Багян А.Р., Малинин А.А. Методы определения и мониторирования биомаркеров состояния кровоснабжения тканей на экспериментальных моделях и при кожно-пластических операциях. Клиническая физиология кровообращения. 2023; 20 (3): 242–253. DOI: 10.24022/1814-6910-2023-20-3-242-253
  23. Каторкин С.Е., Сушков С.А., Кушнарчук М.Ю. Современные стандарты хирургического лечения венозных трофических язв нижних конечностей. Новости хирургии. 2021; 29 (1): 75–89.
  24. Ославский А.И., Филипович А.В., Головня В.И., Качук Д.Н., Дубровская К.И. Послойная дермолипэктомия (шейв-терапия) в комплексном лечении трофических язв нижних конечностей варикозной этиологии. Polish Journal of Science. 2020; 23-1 (23): 35– 39.
  25. Фионик О.В., Красникова В.В., Покатило Д.А., Поспелова М.Л. Изменения микроциркуляторного русла у пациенток с постмастэктомическим синдромом. Вопросы реконструктивной и пластической хирургии. 2021; 24 (3-4): 55–62. DOI: 10.52581/1814-1471/78-79/05
  26. Okabe K., Kishi K. Evaluation of blood perfusion in skin flaps. In Fluorescence-guided surgery. From lab to operation room. Singapore: Springer Nature Singapore; 2023: 55–62. DOI: 10.1007/978-981-19-7372-7_10
  27. Cruz-Segura A., Cruz-Domínguez M.P., Jara L.J. Early detection of vascular obstruction in microvascular flaps using a thermographic camera. J. Reconstr. Microsurg. 2019; 35 (07): 541–548.
  28. Bernasconi S., Angelucci A., De Cesari A., Masotti A., Pandocchi M., Vacca F. et al. Recent technologies for transcutaneous oxygen and carbon dioxide monitoring. Diagnostics. 2024; 14 (8): 785.
  29. Tufan T.B., Guler U. A miniaturized transcutaneous carbon dioxide monitor based on dual lifetime refe-rencing. In BioCAS 2022 – IEEE Biomedical Circuits and Systems Conference: Intelligent biomedical systems for a better future, proceedings. Piscataway, NJ, USA; 2022: 144–148.
  30. Sorotos M., Firmani G., Tornambene R., Marrella D., Paolini G., di Pompeo S.F. DIEP flap perfusion asses-sment using microdialysis versus Doppler ultrasonography: a comparative study. Microsurgery. 2024; 44 (1): e31097.
  31. Lee D.W., Hwang Y.S., Byeon J.Y., Kim J.H., Choi H.J. Does the advantage of transcutaneous oximetry measu-rements in diabetic foot ulcer apply equally to free flap reconstruction? World J. Clin. Cases. 2023; 11 (31): 7570–7582. DOI: 10.12998/wjcc.v11.i31.7570
  32. Krishnasamy K., Abdullah H.S., Chinna K. Lower limb lymphedema successfully treated with flap monitoring – a case report. Int. J. Sci. Med. Res. 2022; 2 (4): 12–15. DOI: 10.55349/ijmsnr.2022241215
  33. Özsoylu D., Janus K.A., Achtsnicht S., Wagner T., Keusgen M., Schöning M.J. (Bio-) Sensors for skin grafts and skin flaps monitoring. Sens. Actuat. Rep. 2023; 6 (37): 100163. DOI: 10.1016/j.snr.2023.100163
  34. Hadzimustafic N., D’Elia A., Duru C., Haykal S. Advances in ischemia reperfusion injury prevention in free flaps and vascularized composite allotransplanta-tion. Canada; 2023. DOI: 10.5772/intechopen.112993
  35. Bernuth S., Vater A., Fuchs K.F., Meffert R.H., Jakubietz R.G. Perfusion changes in perforator-based pro-peller flaps. J. Reconstr. Microsurg. Open. 2023; 8 (01): e45–e50.
  36. Luck J. Assessment of flap perfusion: microvascular flowmetry. Core techniques in flap reconstructive micro-surgery: a stepwise guide. Springer Nature Switzerland; 2023; 25–37. DOI: 10.1007/978-3-031-07678-7
  37. Van Den Hoven P., Osterkamp J., Nerup N., Svendsen M.B.S., Vahrmeijer A., Van Der Vorst J.R., Achiam M.P. Quantitative perfusion assessment using indocyanine green during surgery – current applications and re-commendations for future use. Langenb. Arch. Surg. 2023; 408 (1): 67.
  38. Иванов А.Н., Лагутина Д.Д., Степанова Т.В. Особенности механизмов реализации дистантного стимулирующего эффекта аутотрансплантации кожного лоскута на перфузию микроциркуляторного русла в условиях локальных и системных нарушений. Вестник трансплантологии и искусственных органов. 2020; 22 (4): 123–132. DOI: 10.15825/1995-1191-2020-4-123-132
  39. Поройский С.В., Морозов Е.А. Исследование особенностей микроциркуляции зоны дигестивного анастомоза в раннем и позднем послеоперационном периоде как предиктора его несостоятельности. Вестник Волгоградского государственного медицинского университета. 2022; 19 (2): 105–110. DOI: 10.19163/1994-9480-2022-19-2-105-110
  40. Пржедецкий Ю.В., Позднякова В.В., Максимова Н.А., Хохлова О.В., Захарова Н.А., Ильченко М.Г., Пржедецкая В.Ю. Использование кожно-фасциальных лоскутов на перфорантных сосудах в хирургическом лечении меланомы кожи. Южно-Российский онкологический журнал. 2020; 1 (3): 18–26.
  41. Тулеубаев Б.Е., Васильев К.В., Шмидт С.Я., Шайкен Е.А. Клинический пример лечения пациента с обширной травматической отслойкой кожи и переломами костей на уровне одной конечности. Universum: медицина и фармакология. 2021; 5 (77): 23–28.
  42. Рыжков А.Д., Яковлева Л.П., Кропотов М.А., Соболевский В.А., Диков Ю.Ю., Ивашков В.Ю. и др. Применение однофотонной эмиссионной томографии для оценки жизнеспособности реваскуляризированных аутотрансплантатов при хирургической реконструкции нижней челюсти. Саркомы костей, мягких тканей и опухоли кожи. 2016; 3: 26–33.
  43. Xie R., Liu Q., Zhang Y., Guo C., Huang X., Liu M. A wireless infrared thermometry device for postoperative flap monitoring: proof of concept in patients. Surg. Innov. 2023; 30 (5): 636–639.
  44. Поворозник А.Н. Эффективность лечения донорских ран в условиях влажной камеры с использованием биогальванизации. Вестник неотложной и восстановительной медицины. 2008; 3: 326–328.
  45. Евтеев А.А. К вопросу об оценке эффективности аутодермопластики. Регрессивные метаморфозы кожных трансплантатов. Комбустиология. 2000; 5.
  46. Marks H., Bucknor A., Roussakis E., Nowell N., Kamali P., Cascales J.P. et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci. Adv. 2020; 6 (51): eabd1061. https://pubmed.ncbi.nlm.nih.gov/33355131/
  47. Heyboer 3rd M., Sharma D., Santiago W., McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. Adv. Wound. Care. 2017; 6 (6): 210–224.
  48. Wada H.C.R., Vargas J., Angelo B., Faulkner-Jones M.A., Paul O.A., Ho B.T., Lee J.V. Accurate prediction of tissue viability at postoperative day 7 using only two intraoperative subsecond near-infrared fluorescence images. Plast. Reconstr. Surg. 2017; 139: 354–363. DOI: 10.1097/ PRS.0000000000003009
  49. Tomioka Y., Sekino M., Gu J., Kurita M., Yamashita S., Miyamoto S. et al. Wearable, wireless, multi-sensor device for monitoring tissue circulation after free-tissue transplantation: a multicentre clinical trial. Sci. Rep. 2022; 12: 16532. DOI: 10.1038/s41598-022-21007-8
  50. Berthelot M., Henry F.P., Hunter J., Leff D., Wood S., Jallali N. et al. Pervasive wearable device for free tissue transfer monitoring based on advanced data analysis: clinical study report. J. Biomed. Opt. 2019; 24 (6): 067001. DOI: 10.1117/1.JBO.24.6.067001
  51. Mofikoya B.O., Ugburo A.O., Belie O.M. Clinical assessment score for monitoring free flaps in the dark skin. Alban. J. Med. Heal. Sci. 2018; 49: 18–22.
  52. Lee J.-H., You H.-J., Lee T.-Y., Kang H.J. Current status of experimental animal skin flap models: ischemic pre-conditioning and molecular factors. Intern. J. Molecul. Sci. 2022; 23 (9): 5234. DOI: 10.3390/ijms23095234
  53. Bian H.Z., Pek C.H., Hwee J. Current evidence on the use of near-infrared spectroscopy for postoperative free flap monitoring: a systematic review. Chinese. J. Plast. Reconstr. Surg. 2022; 4: 194–202. DOI: 10.1016/j.cjprs.2022.08.008
  54. Сигаев И.Ю., Керен М.А., Шония З.Д. Возможности ультразвуковой флоуметрии в сочетании с эпикардиальным ультразвуковым сканированием для комплексной оценки функционального состояния кондуитов при операциях коронарного шунтирования. Грудная и сердечно-сосудистая хирургия. 2021; 63 (2): 133–139. DOI: 10.24022/0236-2791-2021-63-2-133-139
  55. Петросян К.В., Лосев В.В., Голубев Е.П., Караев А.В., Бокерия Л.А. Применение оптической когерентной томографии для определения оптимального участка при создании коронарных кондуитов. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2021; 22 (2): 239–245. DOI: 10.24022/1810-0694-2021-22-2-239–245
  56. Садыкова Д.И., Сабирова З.Ф., Аминова Г.Г. Морфофункциональное состояние макро- и микроциркуляторного русла в процессе регенерации кожи у человека. Морфология. 2016; 149 (3): 94–98.
****
  1. Bogdanov S.B., Alad’ina V.A., Marchenko D.N., Polyakov A.V., Melkonyan K.I., Gilevich I.V., Bogdanova Yu.A. Surgical aspects of engraftment of a full-layer skin autograft on a granulating wound. Innovative Medicine of Kuban. 2020; 18 (2): 41–45 (in Russ.). DOI: 10.35401/2500-0268-2020-18-2-41-45
  2. Bogdanov S.B., Aristov A.M., Alad’ina V.A., Kurinnyy S.N., Polyakov A.V., Blazhenko A.N. et al. Relevance of performing plastic surgery according to Krasovitov for traumatic detachments of the skin of the hand. Plastic Surgery and Aesthetic Medicine. 2021; 1: 44–51 (in Russ.). DOI: 10.17116/plast.hirurgia 202101144
  3. Baytinger V.F., Selyaninov K.V. Microcirculatory bed in reperfused flaps: modern possibilities of correction of hemodynamic disorders (part I). Issues of Reconstructive and Plastic Surgery. 2020; 23 (2): 29–40 (in Russ.). DOI: 10.17223/1814147/73/04
  4. Malinin A.A., Pryadko S.I., Peskova A.S., Papitashvili V.G., Chomaeva A.A. Traction method of skin wound plastic surgery during resection operations in patients with elephantiasis of the extremities. Phlebology. 2022; 16 (4): 277–286 (in Russ.).
  5. Malinin A.A., Bagyan A.R., Sergeev S.Yu. Results of surgical treatment and complications after resection and plastic surgery for deforming lymphedema. Clinical Physiology of Circulation. 2023; 20 (4): 390–402 (in Russ.). DOI: 10.24022/1814-6910-2023-20-4-390-402
  6. Chehelcheraghi F., Eimani H., Sadraie S.H., Torkaman G., Amini A., Shemshadi H., Majd H.A. Improved viability of random pattern skin flaps with the use of bone marrow mesenchymal-derived stem cells and chicken embryo extract. Iran. J. Basic. Med. Sci. 2015; 18: 764–772.
  7. Lin B., Lin Y., Lin D., Cao B. Effects of bezafibrate on the survival of random skin flaps in rats. J. Reconstr. Microsurg. 2016; 32: 395–401.
  8. McFarlane R.M., Deyoung G., Henry R.A. The design of a pedicle flap in the rat to study necrosis and its prevention. Plast. Reconstr. Surg. 1965; 35: 177–182.
  9. Camargo C.P., Margarido N.F., Guandelini E., Vieira G.A., Jacomo A.L., Gemperli R. Description of a new experimental model skin flap for studying skin viability in rats. Acta Cir. Bras. 2014; 29: 166–170.
  10. Esteves G.R., Junior I.E., Masson I.F.B., Machado A.F.P., Oliveira M.C.D., Baldan C.S. et al. Photobiomodulation effect in tumoral necrosis factor-alpha (TNF-alpha) on the viability of random skin flap in rats. Lasers Med. Sci. 2022; 37: 1495–1501.
  11. Malinin A.A., Pryadko S.I., Peskova A.S., Chomaeva A.A. Treatment tactics for trophic venous ulcers with surgical debridement and one- stage autodermatoplasty. Phlebology. 2022; 16 (2): 130–139 (in Russ.).
  12. Valiev A.A., Hasanov R.Sh., Galimova L.L., Gataullin I.G. Modern methods of assessing the viability of the intestinal wall (review). Coloproctology. 2023; 22 (3): 140–148 (in Russ.). DOI: 10.33878/2073-7556-2023-22-3-140-148
  13. Abe Y., Hashimoto I., Goishi K., Kashiwagi K., Yamano M., Nakanishi H. Transcutaneous pCO2 measurement at low temperature for reliable and continuous free flap monitoring. Plastic Reconstr. Surg. Glob. Open. 2013; 1 (2): 1–8. DOI: 10.1097/GOX.0b013e3182936cd0
  14. Halani S.H., Hembd A.S., Li X., Kirby B., Beard C.C., Haddock N.T., Suszynski T.M. Flap monitoring using transcutaneous oxygen or carbon dioxide measurements. J. Hand. Microsurg. 2022; 14: 10–18. DOI: 10.1055/ s-0040-1718862
  15. Mihaylov I.A., Moroz V.Y., Yudenich A.A. Role of a transcutant oximetry after autotransplantation of the tissue complexes on a vascular pedicle. Journal of New Medical Technologies. 2008; XV (2): 137–139 (in Russ.).
  16. Malyhina I.F., Nerobeev A.I., Dobrodeev A.S., Verbo E.V., Garelik E.I., Salihov K.S. Tissue oximetry: assessment of free flap viability in head and neck reconstruction. Issues in Reconstructive and Plastic Surgery. 2015; 18 (2): 11–24 (in Russ.).
  17. Van Der Walt J.C., Perks T.J., Zeeman B.J.V., Bruce-Chwatt A.J., Graewe F.R. Modified charles procedure using negative pressure dressings for primary lymphe-dema: a functional assessment. Ann. Plast. Surg. 2009; 62 (6): 669–675. DOI: 10.1097/SAP.0b013e318180cd24
  18. Karonidis A., Chen H.C. Preservation of toes in advanced lymphedema an important step in the control of infection. Ann. Plast. Surg. 2010; 64 (4): 446–450. DOI: 10.1097/SAP.0b013e3181b30416
  19. Ciudad P., Escandón J.M., Manrique O.J., Bustos V.P. Lessons learnt from an 11-year experience with lymphatic surgery and a systematic review of reported complications: technical considerations to reduce morbidity. Arch. Plast. Surg. 2022; 49 (02): 227–239. DOI: 10.21037/ gs-23-247.10.1055/s-0042-1744412
  20. Karlsson T., Mackie H., Koelmeyer L., Heydon-White A., Ricketts R., Toyer K. et al. Liposuction for advanced lymphedema in a multidisciplinary team setting in Australia: 5-year follow-up. Plast. Reconstr. Surg. 2024; 153 (2): 482–491. DOI: 10.1097/PRS. 0000000000010612
  21. Gaxiola-García M.A., Escandón J., Manrique O.J., Skinner K.A., Contreras B.H.K. Surgical treatment for primary lymphedema: a systematic review of the literature. Arch. Plast. Surg. 2024; 51 (02): 212–233. DOI: 10.1055/a-2253-9859
  22. Bagyan A.R., Malinin A.A. Methods for determining and monitoring biomarkers of the state of blood supply to tissue in experimental models and during skin-plastic surgery. Clinical Physiology of Circulation. 2023; 20 (3): 242–253 (in Russ.). DOI: 10.24022/1814-6910-2023-20-3- 242-253
  23. Katorkin S.E., Sushkov S.A., Kushnarchuk M.Yu. Modern standards of surgical treatment of venous trophic ulcers of the lower extremities. Novosti Khirurgii. 2021; 29 (1): 75–89 (in Russ.).
  24. Aslauski A., Filipovich A., Halaunia V., Kachuk D., Dubrouskaya K. Layer-by-layer dermolipectomy (shave therapy) in complex treatment of trophic ulcers of lower extremities of varicose etiology. Polish Journal of Science. 2020; 23-1 (23): 35–39 (in Russ.).
  25. Fionik O.V., Krasnikova V.V., Pokatilo D.A., Pospelova M.L. Changes in the microcirculatory bed in patients with post-mastectomy syndrome. Issues of Reconstructive and Plastic Surgery. 2021; 24 (3-4): 55–62 (in Russ.). DOI: 10.52581/1814-1471/78-79/05
  26. Okabe K., Kishi K. Evaluation of blood perfusion in skin flaps. In Fluorescence-guided surgery. From lab to operation room. Singapore: Springer Nature Singapore; 2023: 55–62. DOI: 10.1007/978-981-19-7372-7_10
  27. Cruz-Segura A., Cruz-Domínguez M.P., Jara L.J. Early detection of vascular obstruction in microvascular flaps using a thermographic camera. J. Reconstr. Microsurg. 2019; 35 (07): 541–548.
  28. Bernasconi S., Angelucci A., De Cesari A., Masotti A., Pandocchi M., Vacca F. et al. Recent technologies for transcutaneous oxygen and carbon dioxide monitoring. Diagnostics. 2024; 14 (8): 785.
  29. Tufan T.B., Guler U. A miniaturized transcutaneous carbon dioxide monitor based on dual lifetime refe-rencing. In BioCAS 2022 – IEEE Biomedical Circuits and Systems Conference: Intelligent biomedical systems for a better future, proceedings. Piscataway, NJ, USA; 2022: 144–148.
  30. Sorotos M., Firmani G., Tornambene R., Marrella D., Paolini G., di Pompeo S.F. DIEP flap perfusion asses-sment using microdialysis versus Doppler ultrasonography: a comparative study. Microsurgery. 2024; 44 (1): e31097.
  31. Lee D.W., Hwang Y.S., Byeon J.Y., Kim J.H., Choi H.J. Does the advantage of transcutaneous oximetry measu-rements in diabetic foot ulcer apply equally to free flap reconstruction? World J. Clin. Cases. 2023; 11 (31): 7570–7582. DOI: 10.12998/wjcc.v11.i31.7570
  32. Krishnasamy K., Abdullah H.S., Chinna K. Lower limb lymphedema successfully treated with flap monitoring – a case report. Int. J. Sci. Med. Res. 2022; 2 (4): 12–15. DOI: 10.55349/ijmsnr.2022241215
  33. Özsoylu D., Janus K.A., Achtsnicht S., Wagner T., Keusgen M., Schöning M.J. (Bio-) Sensors for skin grafts and skin flaps monitoring. Sens. Actuat. Rep. 2023; 6 (37): 100163. DOI: 10.1016/j.snr.2023.100163
  34. Hadzimustafic N., D’Elia A., Duru C., Haykal S. Advances in ischemia reperfusion injury prevention in free flaps and vascularized composite allotransplanta-tion. Canada; 2023. DOI: 10.5772/intechopen.112993
  35. Bernuth S., Vater A., Fuchs K.F., Meffert R.H., Jakubietz R.G. Perfusion changes in perforator-based pro-peller flaps. J. Reconstr. Microsurg. Open. 2023; 8 (01): e45–e50.
  36. Luck J. Assessment of flap perfusion: microvascular flowmetry. Core techniques in flap reconstructive micro-surgery: a stepwise guide. Springer Nature Switzerland; 2023; 25–37. DOI: 10.1007/978-3-031-07678-7
  37. Van Den Hoven P., Osterkamp J., Nerup N., Svendsen M.B.S., Vahrmeijer A., Van Der Vorst J.R., Achiam M.P. Quantitative perfusion assessment using indocyanine green during surgery – current applications and re-commendations for future use. Langenb. Arch. Surg. 2023; 408 (1): 67.
  38. Ivanov A.N., Lagutina D.D., Stepanova T.V. Features of the mechanisms of implementation of the distant stimulating effect of autotransplantation of a skin flap on the perfusion of the microcirculatory bed in conditions of local and systemic disorders. Bulletin of Transplantology and Artificial Organs. 2020; 22 (4): 123–132 (in Russ.). DOI: 10.15825/1995-1191-2020-4-123-132
  39. Poroyskiy S.V., Morozov E.A. Study of microcirculation features of the digestive anastomosis zone in the early and late postoperative period as a predictor of its failure. Bulletin of the Volgograd State Medical University. 2022; 19 (2): 105–110 (in Russ.). DOI: 10.19163/1994-9480- 2022-19-2-105-110
  40. Przhedeckiy Yu.V., Pozdnyakova V.V., Maksimova N.A., Khokhlova O.V., Zakharova N.A., Ilchenko M.G., Przhedetskaya V.Yu. Use of skin- fascial flaps on perforating vessels in the surgical treatment of skin melanoma. South Russian Journal of Cancer. 2020; 1 (3): 18–26 (in Russ.).
  41. Tuleubaev B.E., Vasilyev K.V., Shmidt S.Ya., Shayken E.A. A clinical example of treating a patient with extensive traumatic skin detachment and bone fractures at the level of one limb. Universum: medicine and pharmacology. 2021; 5 (77): 23–28 (in Russ.).
  42. Ryzhkov A.D., Yakovleva L.P., Kropotov M.A., Sobolevskiy V.A., Dikov Yu.Yu., Ivashkov V.Yu. et al. Application of single-photon emission tomography to assess the viability of revascularized autografts in surgical reconstruction of the lower jaw. Sarcomas of Bones, Soft Tissues and Skin Tumors. 2016; 3: 26–33 (in Russ.).
  43. Xie R., Liu Q., Zhang Y., Guo C., Huang X., Liu M. A wireless infrared thermometry device for postoperative flap monitoring: proof of concept in patients. Surg. Innov. 2023; 30 (5): 636–639.
  44. Povoroznik A.N. Efficiency of donor wound treatment in a humid chamber using biogalvanization. Bulletin of Emergency and Restorative Medicine. 2008; 3: 326–328 (in Russ.).
  45. Evteev A.A. On the issue of assessing the effectiveness of autodermoplasty. Regressive metamorphoses of skin grafts. Combustiology. 2000; 5 (in Russ.).
  46. Marks H., Bucknor A., Roussakis E., Nowell N., Kamali P., Cascales J.P. et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci. Adv. 2020; 6 (51): eabd1061. https://pubmed.ncbi.nlm.nih.gov/33355131/
  47. Heyboer 3rd M., Sharma D., Santiago W., McCulloch N. Hyperbaric oxygen therapy: side effects defined and quantified. Adv. Wound. Care. 2017; 6 (6): 210–224.
  48. Wada H.C.R., Vargas J., Angelo B., Faulkner-Jones M.A., Paul O.A., Ho B.T., Lee J.V. Accurate prediction of tissue viability at postoperative day 7 using only two intraoperative subsecond near-infrared fluorescence images. Plast. Reconstr. Surg. 2017; 139: 354–363. DOI: 10.1097/ PRS.0000000000003009
  49. Tomioka Y., Sekino M., Gu J., Kurita M., Yamashita S., Miyamoto S. et al. Wearable, wireless, multi-sensor device for monitoring tissue circulation after free-tissue transplantation: a multicentre clinical trial. Sci. Rep. 2022; 12: 16532. DOI: 10.1038/s41598-022-21007-8
  50. Berthelot M., Henry F.P., Hunter J., Leff D., Wood S., Jallali N. et al. Pervasive wearable device for free tissue transfer monitoring based on advanced data analysis: clinical study report. J. Biomed. Opt. 2019; 24 (6): 067001. DOI: 10.1117/1.JBO.24.6.067001
  51. Mofikoya B.O., Ugburo A.O., Belie O.M. Clinical assessment score for monitoring free flaps in the dark skin. Alban. J. Med. Heal. Sci. 2018; 49: 18–22.
  52. Lee J.-H., You H.-J., Lee T.-Y., Kang H.J. Current status of experimental animal skin flap models: ischemic pre-conditioning and molecular factors. Intern. J. Molecul. Sci. 2022; 23 (9): 5234. DOI: 10.3390/ijms23095234
  53. Bian H.Z., Pek C.H., Hwee J. Current evidence on the use of near-infrared spectroscopy for postoperative free flap monitoring: a systematic review. Chinese. J. Plast. Reconstr. Surg. 2022; 4: 194–202. DOI: 10.1016/j.cjprs.2022.08.008
  54. Sigaev I.Yu., Keren M.A., Shoniya Z.D. Capabilities of ultrasound flowmetry in combination with epicardial ultrasound scanning for a comprehensive assessment of the functional state of conduits in coronary artery bypass grafting operations. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2021; 63 (2): 133–139 (in Russ.). DOI: 10.24022/0236-2791-2021-63-2-133-139
  55. Petrosyan K.V., Losev V.V., Golubev E.P., Karaev A.V., Bockeria L.A. Application of optical coherence tomography to determine the optimal site when creating coronary conduits. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2021; 22 (2): 239–245 (in Russ.). DOI: 10.24022/1810-0694-2021-22-2-239-245
  56. Sadykova D.I., Sabirova D.R., Mirzhalolov M.M. Results of pulse oximetry screening in children with critical congenital heart defects.Children’s Heart and Vascular Diseases. 2023; 20 (2): 118–125 (in Russ.). DOI: 10.24022/1810-0686-2023-20-2-118-125

About Authors

  • Arut R. Bagyan, Postgraduate; ORCID
  • Aleksandr A. Malinin, Dr. Med. Sci., Chief Researcher; ORCID
  • Yuriy M. Tsygankov, Cand. Med. Sci., Researcher, Cardiovascular Surgeon; ORCID
  • Aida A. Chomaeva, Cand. Med. Sci., Surgeon; ORCID

 If you found mistakes, select text and press Alt+A