Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The effect of nitric oxide and molecular hydrogen on oxidative, antioxidant and aggregation indicators of erythrocytes during cardiac surgery with cardiopulmonary bypass

Authors: Deryugina A.V.1, Pichugin V.V.23, Danilova D.A.1, Trofimov R.D.23, Starshov A.S.23, Doronina M.A.1, Domnin S.E.3, Taranov E.V.23, Zhilyaev S.A.3, Brichkin Yu.D.3

Company:
1 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
2 Volga Region Research Medical University, Nizhny Novgorod, Russian Federation
3 Research Institute – Specialized Cardiac Surgical Clinical Hospital named after academician B.A. Korolev, Nizhny Novgorod, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2024-21-1-45-55

UDC: 612.111.31:616.12-089

Link: Clinical Physiology of Blood Circulaiton. 2024; 21 (1): 56-68

Quote as: Deryugina A.V., Pichugin V.V., Danilova D.A., Trofimov R.D., Starshov A.S., Doronina M.A., Domnin S.E., Taranov E.V., Zhilyaev S.A., Brichkin Yu.D. The effect of nitric oxide and molecular hydrogen on oxidative, antioxidant and aggregation indicators of erythrocytes during cardiac surgery with cardiopulmonary bypass. Clinical Physiology of Circulation. 2024; 21 (1): 45–55 (in Russ.). DOI: 10.24022/1814-6910-2024-21-1-45-55

Received / Accepted:  19.01.2024 / 07.03.2024

Download
Full text:  

Abstract

Objective. To study the oxidative potential, antioxidant properties and aggregation of erythrocytes under the action of molecular hydrogen and nitric oxide during cardiopulmonary bypass (CPB) in cardiac surgery patients.

Material and methods. The study included 44 patients who underwent heart valve surgeries and combined interventions under CPB. The patients were divided into 4 groups. Group 1 – control; group 2 – patients with isolated supply of nitric oxide (NO) into the extracorporeal circuit; group 3 – with supply of molecular hydrogen (H2); group 4 – with combined supply of NO and H2. The concentration of malondialdehyde (MDA), catalase activity (CA) in erythrocytes and erythrocyte aggregation were studied during and after surgery.

Results. The MDA concentration and erythrocyte aggregation increased and СА decreased during CPB at all stages of the study in the control group of patients. NO decreased the MDA concentration and increased CA compared to the control throughout the operation. These indicators were restored to the initial level by the end of the operation under the influence of NO. Aggregation decreased by 1 day after the operation under the influence of NO. H2 caused more significant changes compared to NO. The MDA concentration under the action of H2 was lower than the initial level by the end of surgery and CA and was up to 1 day after the operation. The dynamics MDA concentration and CA under the combined action of NO and H2 were comparable to the action of NO at the stages of the operation. The combined effect of gases was more pronounced on the 1st day after the operation, which was combined with the maximum disaggregating effect compared to other groups

Conclusion. Thus the use of NO, H2 and combination of NO with H2 caused a decrease in oxidative processes and erythrocyte aggregation, expressed during CPB.

References

  1. Чумакова С.П. Деформируемость эритроцитов и особенности фосфолипидного спектра их мембраны у кардиохирургических больных с умеренным и выраженным постперфузионным гемолизом. Фундаментальные исследования. 2013; 2–1: 205–210.
  2. Чумакова С.П., Шипулин В.М., Уразова О.И., Новицкий В.В., Бармина С.Э. Роль неравномерной оксигенации крови и других условий перфузии в патогенезе гемолиза при операциях с искусственным кровообращением. Фундаментальная и клиническая медицина. 2018; 3 (1): 22–29. DOI: 10. 23946/2500-0764-2018-3-1-22-29
  3. Трекова Н.А., Яворовский А.Г. Системный воспалительный ответ организма при операциях с ИК и пути снижения его активности. В кн.: Бунятан А.А. (ред.). Руководство по кардиоанестезиологии. М.; 2005.
  4. Дементьева И.И., Морозов Ю.А., Чарная М.А. Интраоперационное повышение концентрации свободного гемоглобина в плазме крови (гемолиз) в кардиохирургии. Кардиология и сердечно-сосудистая хирургия. 2008; 6: 60–63.
  5. Clark J.B. Сommentary: encouraging findings for the renal-protective effect of nitric oxide administration during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2023; 166 (5): e176–e177. DOI: 10.1016/j.jtcvs. 2023.04.043
  6. Федосеев Е.Н., Шаповалова О.О., Шамрова Е.А. Экспериментальное исследование сорбционных свойств эритроцитов. Научное обозрение. Медицинские науки. 2019; 1: 71–75.
  7. Дементьева И.И., Морозов Ю.А., Сандриков В.А., Чарная М.А., Гончарова А.В., Федулова С.В. Проблема церебральных микроэмболических осложнений у кардиохирургических больных и гемореологические методы их профилактики. Патология кровообращения и кардиохирургия. 2010; 3: 50–55.
  8. Юдин Г.В., Рыбка М.М., Хинчагов Д.Я., Дибин Д.А., Гончаров А.А. Анемия как фактор риска дисфункции внутренних органов у больных, оперируемых по поводу приобретенных пороков сердца. Кардиология. 2021; 61 (4): 39–45. DOI: 10.18087/cardio. 2021.4.n1596
  9. Wang D., Wu X., Li J., Xiao F., Liu X., Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesthesia & Analgesia. 2002; 95 (5): 1134–1141. DOI: 10.1097/00000539-200211000-00002
  10. Кузнецова В.Л., Соловьева А.Г. Оксид азота: свойства, биологическая роль, механизмы действия. Современные проблемы науки и образования. 2015; 4: 462.
  11. Kura B., Slezak J. The protective role of molecular hydrogen in ischemia/reperfusion injury. Int. J. Mol. Sci. 2024; 25 (14): 7884. DOI: 10. 3390/ijms25147884
  12. Li Hong-mei, Shen Li., Ge Jun-wen, Zhang Rufang. The transfer of hydrogen from inert gas to therapeutic gas. Med. Gas. Res. 2017; 7 (4): 265–272. DOI: 10.4103/ 2045-9912.222451
  13. Dhillon G., Buddhavarapu V., Grewal H., Sharma P., Verma R.K., Munjal R. et al. Hydrogen water: extra healthy or a hoax? A Systematic Review. Int. J. Mol. Sci. 2024; 25 (2): 973. DOI: 10.3390/ijms25020973
  14. Дерюгина А.В., Ошевенский Л.В., Таламанова М.Н., Цветков А.И., Шабалин М.А., Глявин М.Ю., Крылов В.Н. Изменение электрокинетических и биохимических характеристик эритроцитов при действии электромагнитных волн терагерцового диапазона. Биофизика. 2017; 62 (6): 1108–1113.
  15. Дерюгина А.В., Бояринов Г.А., Симутис И.С., Никольский В.О., Кузнецов А.Б., Ефимова Т.С. Коррекция озонированной эритроцитной массой метаболических показателей эритроцитов и структуры миокарда после острой кровопотери. Цитология. 2018; 60 (2): 89–95. DOI: 10.31116/tsitol.2018.02.03
  16. Дерюгина А.В., Грачева Е.А. Эффективность цитофлавина при экспериментальной артериальной гепертензии. Экспериментальная и клиническая фармакология. 2020; 83 (2): 8–11. DOI: DOI: 10.30906/0869-2092-2020-83-2-8-11
  17. Repetto M., Semprine J., Boveris A. Lipid peroxidation: chemical mechanism, biological implications and ana-lytical determination. Lipid Peroxidation. 2012; 1 (1): 30. DOI: 10.5772/45943
  18. Gaschler M.M., Stockwell B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017; 482 (3): 419–425. DOI: 10.1016/j. bbrc.2016.10.086
  19. Медведев И.Н., Скорятина И.А. Агрегационные свойства форменных элементов крови и сосудистый контроль над ними у больных артериальной гипертонией с дислипидемией. Российский кардиологический журнал. 2015; 120 (4): 18–22. DOI: 10.15829/1560-4071-2015-4-18-22
  20. Пичугин В.В., Дерюгина А.В., Домнин С.Е., Ширшин А.С., Федоров С.А., Буранов С.Н. и др. Комбинированное введение оксида азота и водорода в экстракорпоральный контур искусственного кровообращения как метод органопротекции при операциях на сердце. Современные технологии в медицине. 2023; 15 (5): 15–23. DOI: 10.17691/stm2023.15.5.02
  21. Фатеева В.В., Воробьева О.В. Оксид азота: от механизма действия к фармакологическим эффектам при цереброваскулярных заболеваниях. Журнал неврологии и психиатрии имени С.С. Корсакова. 2017; 117 (10): 131–135. DOI: 10.17116/jnevro 2017117101131-135
  22. Bor-Kucukatay M., Wenby R.B., Meiselman H.J., Baskurt O.K. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol. 2003; 284: H1577–H1584. DOI: 10.1152/ajpheart.00665.2002
  23. Скорятина И.А. Агрегационно-дезагрегационные явления в крови при артериальной гипертонии с дислипидемией. Ульяновский медико-биологический журнал. 2016; 1: 47–56.
  24. Spina S., Lei C., Pinciroli R., Berra L. Hemolysis and kidney injury in cardiac surgery: the protective role of nitric oxide therapy. Semin. Nephrol. 2019; 39 (5): 484–495. DOI: 10.1016/j.semnephrol.2019.06.008
  25. Singh R.B., Sumbalova Z., Fatima G., Mojto V., Fedacko J., Tarnava A. et al. Effects of molecular hydrogen in the pathophysiology and management of cardiovascular and metabolic diseases. Rev. Cardiovasc. Med. 2024; 25 (1): 33. DOI: 10. 31083/j.rcm2501033
  26. Данилова Д.А., Бричкин Ю.Д., Медведев А.П., Пичугин В.В., Федоров С.А., Таранов Е.В. и др. Использование молекулярного водорода при операциях на сердце в условиях искусственного кровообращения. Современные технологии в медицине. 2021; 13 (1): 71–77. DOI: 10.17691/stm2021.13.1.09
  27. Kawamura T., Huang C.S., Tochigi N., Lee S., Shigemura N., Billiar T.R. et al. Inhaled hydrogen gas therapy for prevention of lung transplant- induced ischemia/reperfusion injury in rats. Transplantation. 2010; 90: 1344–1351. DOI: 10.1097/TP.0b013e3181fe1357
  28. Cheng D., Long J., Zhao L., Liu J. Hydrogen: a rising star in gas medicine as a mitochondria-targeting nutrient via activating keap1-nrf2 antioxidant system. Antioxidants (Basel). 2023; 12 (12): 2062. DOI: 10.3390/antiox12122062
  29. Piorczynski T.B., Calixto J., Henry H.C., England K., Cowley S., Hansen J.M. et al. Valproic acid causes redox-regulated post-translational protein modifications that are dependent upon p19 cellular differentiation states. Antioxidants (Basel). 2024; 13 (5): 560. DOI: 10.3390/ antiox13050560
****
  1. Chumakova S.P. Deformability of erythrocytes and features of the phospholipid spectrum of their membrane in cardiac surgery patients with moderate and severe postperfusion hemolysis. Fundamental Research. 2013; 2–1: 205–210 (in Russ.).
  2. Chumakova S.P., Shipulin V.M., Urazova O.I., Novitskiy V.V., Barmina S.E. The role of uneven blood oxygen saturation and other perfusion parameters in development of hemolysis after on-pump coronary artery bypass graft surgery. Fundamental and Clinical Medicine. 2018; 3(1): 22–29 (in Russ.).
  3. Trekova N.A., Yavorovsky A.G. Systemic inflammatory response of the body during operations with CPB and ways to reduce its activity. In: Bunyatan A.A. (ed). Handbook of cardiac anesthesiology. Moscow; 2005: 210–220 (in Russ.).
  4. Dementyeva I.I., Morozov Yu.A., Charnaya M.A. Intraoperative increase in the concentration of free hemoglobin in blood plasma (hemolysis) in cardiac surgery. Cardiology and Cardiovascular Surgery. 2008; 6: 60–63 (in Russ.).
  5. Clark J.B. Сommentary: encouraging findings for the renal-protective effect of nitric oxide administration during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 2023; 166 (5): e176–e177. DOI: 10.1016/j.jtcvs. 2023.04.043
  6. Fedoseev E.N., Shapovalova O.O., Shamrova E.A. Ex-perimental study of the sorption properties of erythrocytes. Scientific Review. Medical Sciences. 2019; 1: 71–75 (in Russ.).
  7. Dementieva I.I., Morozov Yu.A., Sandrikov V.A., Charnaya M.A., Goncharova A.V., Fedulova S.V. The problem of cerebral microembolic complications in cardiac surgery patients and hemorheological methods of their prevention. Pathology of Blood Circulation and Cardiac Surgery. 2010; 3: 50–55 (in Russ.).
  8. Yudin G.V., Rybka M.M., Khinchagov D.Ya., Dibin D.A., Goncharov A.A. Anemia as a risk factor for organ dysfunctions in patients operated on heart valves. Kardiologiia. 2021; 61 (4): 39–45. DOI: 10.18087/cardio.2021.4.n1596 (in Russ.).
  9. Wang D., Wu X., Li J., Xiao F., Liu X., Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesthesia & Analgesia. 2002; 95 (5): 1134–1141. DOI: 10.1097/00000539-200211000-00002
  10. Kuznetsova V.L., Solovieva A.G. Nitric oxide: properties, biological role, mechanisms of action. Modern Problems of Science and Education. 2015; 4: 462 (in Russ.).
  11. Kura B., Slezak J. The protective role of molecular hydrogen in ischemia/reperfusion injury. Int. J. Mol. Sci. 2024; 25 (14): 7884. DOI: 10. 3390/ijms25147884
  12. Li Hong-mei, Shen Li., Ge Jun-wen, Zhang Rufang. The transfer of hydrogen from inert gas to therapeutic gas. Med. Gas. Res. 2017; 7 (4): 265–272. DOI: 10.4103/ 2045-9912.222451
  13. Dhillon G., Buddhavarapu V., Grewal H., Sharma P., Verma R.K., Munjal R. et al. Hydrogen water: extra healthy or a hoax? A Systematic Review. Int. J. Mol. Sci. 2024; 25 (2): 973. DOI: 10.3390/ijms25020973
  14. Deryugina A.V., Oshevenskiy L.V., Talamanova M.N., Tsvetkov A.I., Shabalin M.A., Glyavin M.Yu., Krylov V.N. Еlectrokinetic and biochemical changes in erythrocytes under the action of terahertz range electromagnetic waves. Biophysics. 2017; 62 (6): 914–918. DOI: 10.1134/S0006350917060033 (in Russ.).
  15. Deryugina A.V., Efimova T.S., Boyarinov G.A., Nikolskiy V.O., Kuznetsov A.B., Simutis I.S. Сorrection of metabolic indicators of erythrocytes and myocardium structure with ozonized red blood-cell mass. Cell and Tissue Biology. 2018; 12 (3): 207–212. DOI: 10.1134/ S1990519X18030033
  16. Deryugina A.V., Gracheva E.A. Efficacy of cytoflavinin experimental arterial hypertension. Experimental and Clinical Pharmacology. 2020; 83 (2): 8–11 (in Russ.). DOI: 10.30906/0869-2092-2020-83-2-8-11
  17. Repetto M., Semprine J., Boveris A. Lipid peroxidation: chemical mechanism, biological implications and ana-lytical determination. Lipid Peroxidation. 2012; 1 (1): 30. DOI: 10.5772/45943
  18. Gaschler M.M., Stockwell B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017; 482 (3): 419–425. DOI: 10.1016/j. bbrc.2016.10.086
  19. Medvedev I.N., Skoryatina I.A. Aggregation properties of formed elements of blood and vascular control over them in patients with arterial hypertension with dyslipidemia. Russian Journal of Cardiology. 2015; 120 (4): 18–22 (in Russ.).
  20. Pichugin V.V., Derugina A.V., Domnin S.E., Shirshin A.S., Fedorov S.A., Buranov S.N. et al. Combined administration of nitric oxide and hydrogen into extra-corporeal circuit of cardiopulmonary bypass as a me-thod of organ protection during cardiac surgery. Sovremennye Tehnologii v Medicine (Modern Technologies in Medicine). 2023; 15 (5): 15–23. DOI: 10.17691/stm2023.15.5.02 (in Russ.).
  21. Fateeva V.V., Vorobyova O.V. Nitric oxide: from the mechanism of action to pharmacological effects in ce-rebrovascular diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2017; 117 (10): 131–135 (in Russ.). DOI: 10.17116/jnevro2017117101131-135
  22. Bor-Kucukatay M., Wenby R.B., Meiselman H.J., Baskurt O.K. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol. 2003; 284: H1577–H1584. DOI: 10.1152/ajpheart.00665.2002
  23. Skoryatina I.A. Aggregation-disaggregation phenomena in the blood in arterial hypertension with dyslipidemia. Ulyanovsk Medical and Biological Journal. 2016; 1: 47–56 (in Russ.).
  24. Spina S., Lei C., Pinciroli R., Berra L. Hemolysis and kidney injury in cardiac surgery: the protective role of nitric oxide therapy. Semin. Nephrol. 2019; 39 (5): 484–495. DOI: 10.1016/j.semnephrol.2019.06.008
  25. Singh R.B., Sumbalova Z., Fatima G., Mojto V., Fedacko J., Tarnava A. et al. Effects of molecular hydrogen in the pathophysiology and management of cardiovascular and metabolic diseases. Rev. Cardiovasc. Med. 2024; 25 (1): 33. DOI: 10. 31083/j.rcm2501033
  26. Danilova D.A., Brichkin Yu.D., Medvedev A.P., Pichugin V.V., Fedorov S.A., Taranov E.V. et al. Application of molecular hydrogen in heart surgery under cardio-pulmonary bypass. Sovremennye Tehnologii v Medicine (Modern Technologies in Medicine). 2021; 13 (1): 71–77. DOI: 10.17691/stm2021.13.1.09 (in Russ.).
  27. Kawamura T., Huang C.S., Tochigi N., Lee S., Shigemura N., Billiar T.R. et al. Inhaled hydrogen gas therapy for prevention of lung transplant- induced ischemia/reperfusion injury in rats. Transplantation. 2010; 90: 1344–1351. DOI: 10.1097/TP.0b013e3181fe1357
  28. Cheng D., Long J., Zhao L., Liu J. Hydrogen: a rising star in gas medicine as a mitochondria-targeting nutrient via activating keap1-nrf2 antioxidant system. Antioxidants (Basel). 2023; 12 (12): 2062. DOI: 10.3390/antiox12122062
  29. Piorczynski T.B., Calixto J., Henry H.C., England K., Cowley S., Hansen J.M. et al. Valproic acid causes redox-regulated post-translational protein modifications that are dependent upon p19 cellular differentiation states. Antioxidants (Basel). 2024; 13 (5): 560. DOI: 10.3390/ antiox13050560

About Authors

  • Anna V. Deryugina, Dr. Biol. Sci.; Associate Professor, Chief of Chair; ORCID
  • Vladimir V. Pichugin, Dr. Med. Sci., Professor, Anesthesiologist-Intensivist; ORCID
  • Darya A. Danilova, Senior Lecturer; ORCID
  • Roman D. Trofimov, Postgraduate; ORCID
  • Artem S. Starshov, Postgraduate; ORCID
  • Margarita A. Doronina, Undergraduate; ORCID
  • Stepan E. Domnin, Cand. Med. Sci., Anesthesiologist-Intensivist; ORCID
  • Evgeniy V. Taranov, Anesthesiologist-Intensivist; ORCID
  • Sergey A. Zhilyaev, Anesthesiologist-Intensivist; ORCID
  • Yuriy D. Brichkin, Dr. Med. Sci., Professor; ORCID

 If you found mistakes, select text and press Alt+A