Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Key intracellular signaling pathways of shear stress transduction of vascu-lar wall endothelial cells

Authors: Cygan V.N.1, Sannikov A.B.2

Company:
1 Department of Pathological Physiology by name V.V. Pashutin, St. Petersburg Military Medical Academy by name S.M. Kirov, St. Petersburg, Russian Federation
2 Department of Surgical Diseases with a course in оbstetrics and gynecology, “Privolzsky Research Medical University” (Vladimir Branch), Vladimir, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2025-22-2-134-149

UDC: 616.13/14:611.018.74

Link: Clinical Physiology of Blood Circulaiton. 2025; 22 (2): 134-149

Quote as: Cygan V.N., Sannikov A.B. Key intracellular signaling pathways of shear stress transduction of vascular wall endothelial cells. Clinical Physiology of Circulation. 2025; 22 (2): 134–149 (in Russ.). DOI: 10.24022/1814-6910- 2025-22-2-134-149

Received / Accepted:  14.05.2025 / 27.05.2025

Full text:
Subscribe 🔒

Abstract

This review characterizes the main intracellular transduction signaling pathways from endothelial cell shear stress mechanosensory to changes in its biochemical activity. According to modern data, the most significant transduction pathways are: Pho-RAS-RAF-MEK-MAPK/ERK, PI3K/AKT/mTOR, MEK5–ERK5–MEF2–AMPK and the Notch pathway, which got their name from cascading signaling by step-by-step activation of a large number of protein kinases with tyrosine or serine/threonine specification, as well as protein adapters in the phosphorylation of which they are directly involved. The final destinations of these transduction pathways are their participation in the regulation of intranuclear transcription, which can have a significant impact on the main biological processes, which include: the interaction of endothelial cells with their stem progenitors and their proliferation, further morphogenesis and apoptosis, embryogenesis and angiogenesis. Current evidence highlights the possibility of the cross-influence of these signaling pathways on many biological processes. Through their involvement in intercellular interaction, these transduction signaling pathways are able not only to ensure the stability of the endothelium under physiological conditions of varying shear stress, but also to trigger changes in the phenotype of the endothelial cell during the development of proinflammatory reactions associated with the migration of monocytes and other macrophages to the vascular wall, which is one of the key aspects of the development of endothelial dysfunction. Signal transduction through the highly conserved Notch pathway plays a special role in such intercellular communication, which is currently receiving increased attention. A complete understanding of the key points of various ways of mechanotransduction of signals in physiological conditions will allow us to outline new approaches in the treatment of cardiovascular diseases.

References

  1. Lim X.R., Harraz O.F. Mechanosensing by Vascular Endothelium. Annu. Rev. Physiol. 2024; 86: 71–97. DOI: 10.1146/annurev-physiol-042022-030946
  2. Jurj A., Ionescu C., Berindan-Neagoe I., Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J. Exp. Clin. Cancer Res. 2022; 41 (1): 276. DOI: 10.1186/s13046-022-02484-1
  3. Vittum Z., Cocchiaro S., Mensah S.A. Basal endothelial glycocalyx’s response to shear stress: a review of structure, function, and clinical implications. Front. Cell. Dev. Biol. 2024; 12: 1371769. DOI: 10.3389/fcell.2024.1371769
  4. Цыган В.Н., Санников А.Б. Молекулярные сенсоры трансдукции напряжения сдвига эндотелиальных клеток сосудистой стенки. Клиническая физиология кровообращения. 2025; 22 (1): 33–46. DOI: 10.24022/1814-6910-2025-22-1-33-46
  5. He L., Zhang C.L., Chen Q., Wang L., Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol. Ther. 2022; 235: 108152. DOI: 10.1016/j.pharmthera.2022.108152
  6. Nunes K.P., R.C. Webb. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases. 2021; 12 (5– 6): 458–469. DOI: 10.1080/21541248.2020.1822721
  7. Liu Yu., Chen J., Fontes S. K., Bautista E.N., Cheng Zh. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc. Res. 2021; 118 (2): 386–398. DOI: 10.1093/cvr/cvab008
  8. Hassan D., Menges C.W., Testa J.R., Bellacosa A. AKT kinases as therapeutic targets. J. Experim. Clin. Cancer Research. 2024; 43 (1): 313. DOI: 10.1186/s13046-024-03207-4
  9. Newton A.C. Protein kinase C: perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 2018; 53 (2): 208–230. DOI: 10.1080/10409238.2018.1442408
  10. Chen L., Qu H., Liu B., Chen B.-C., Yang Zh., Shi D.-Z., Zhang Y. et al. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front. Physiol. 2024; 15:1432719. DOI: 10.3389/fphys.2024.1432719
  11. McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Montalto G., Cervello M. et al. Mutations and deregulation of Ras/Raf/MEK/ ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget. 2012; 3 (9): 954–987. DOI: 10.18632/oncotarget.652
  12. Jakubowski H., Witucki Ł. Homocysteine metabolites, endothelial dysfunction, and cardiovascular disease. Int. J. Mol. Sci. 2025; 26 (2): 746. DOI: 10.3390/ijms26020746
  13. Bronner D.N., O’Riordan M.X. Measurement of mitochondrial DNA release in response to ER stress. Bio-Protocol. 2020; 6 (12): e1839. DOI: 10.21769/BioProtoc.1839
  14. Power G., Ferreira-Santos L., Martinez-Lemus L.A., Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 2024; 327 (4): H989–H1003. DOI: 10.1152/ajpheart.00431.2024
  15. Orton R.J., Sturm O.E., Vyshemirsky V., Calder M., Gilbert D.R., Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 2005; 392 (Pt. 2): 249–261. DOI: 10.1042/BJ20050908
  16. Boureux A., Vignal E., Faure S., Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Molec. Biol. Evolut. Oxford University Press. 2007; 24 (1): 203–216. DOI: 10.1093/molbev/msl145
  17. Ang M.J., Kim J., Lee S., Kim S.H., Kim J.-Ch., Jeon T. et al. Transcriptome profiling reveals novel candidate genes related to hippocampal dysfunction in SREBP-1c knockout mice. Int. J. Mol. Sci. 2020; 21 (11): 4131. DOI: 10.3390/ijms21114131
  18. Zhou J., Li Yi-S., Chien Sh. Shear stress – initiated signaling and its regulation of endothelial function. Arterioscler., Thromb., Vasc. Biol. 2014; 18: 2191–2198. DOI: 10.1161/ATVBAHA.114.303422
  19. Cheng H., Zhong W., Wang L., Zhang Q., Ma Xi, Wang Y. et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed. Pharmacother. 2023; 158: 114198. DOI: 10.1016/j.biopha.2022.114198
  20. Burridge K. Focal adhesions: a personal perspective on a half century of progress. FEBS J. 2017; 284 (20): 3355–3361. DOI: 10.1111/ febs.14195
  21. Wrighton K.H. Cell signalling: EGF signalling – it’s all in SHC1’s timing. Natur. Rev. Molecul. Cell. Biol. 2013; 14 (8): 463. DOI: 10.1038/ nrm3630
  22. Toda J., Ichii M., Oritani K., Shibayama H., Tanimura A. et al. Signal-transducing adapter protein-1 is required for maintenance of leukemic stem cells in CML. Oncogene. 2020; 39 (34): 5601–5615. DOI: 10.1038/s41388-020-01387-9
  23. Ichii M., Oritani K., Toda J., Hosen N., Matsuda T., Kanakura Yu.. Signal-transducing adaptor protein-1 and protein-2 in hematopoiesis and diseases. Exp. Hematol. 2021; 105: 10–17. DOI: 10.1016/j.exphem.2021.11.002
  24. Shi Y., Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113 (6): 685–700. DOI: 10.1016/s0092- 8674(03)00432-x
  25. Huminiecki L., Goldovsky L., Freilich S., Moustakas A., Ouzounis C., Heldin C.H. Emergence, development and diversification of the TGF- beta signalling pathway within the animal kingdom. BMC Evolut. Biol. 2009; 9: 28. DOI: 10.1186/1471-2148-9-28
  26. Canalis E., Economides A.N., Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 2003; 24 (2): 218– 235. DOI: 10.1210/er.2002-0023
  27. Qin B.Y., Chacko B.M., Lam S.S., de Caestecker M.P., Correia J.J., Lin K. Structural basis of Smad1 activation by receptor kinase phosphorylation. Molecular Cell. 2011; 8 (6): 1303–1312. Available at: https://www.cell.com/molecular-cell/pdf/S1097-2765(01)00417-8.pdf.
  28. Saxton R.A., Sabatini D.M. mTOR Signaling in growth, metabolism, and disease. Cell. 2017; 168 (6): 960–976. DOI: 10.1016/j.cell.2017.02.004
  29. Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011; 189 (4): 1177–1201. DOI: 10.1534/genetics.111.133363
  30. Andrabi S.M., Sharma N.S., Karan A., Shahriar S.M.S., Cordon B., Ma B., Nitric oxide: physiological functions, delivery, and biomedical applications. J. Adv. Sci. (Weinh). 2023; 10 (30): e2303259. DOI: 10.1002/advs.202303259
  31. Diao D., Wang L., Wan J., Chen Zh., Peng J., Liu H. et al. MEK5 overexpression is associated with the occurrence and development of colorectal cancer. BMC Cancer. 2016; 16: 302. Available at: https://www.bmccancer.biomedcentral.com.
  32. Roberts O.L., Holmes K., Muller J., Cross D.A., Cross M.J. ERK5 and the regulation of endothelial cell function. Biochem. Soc. Trans. 2009; 37 (6): 1254–1259. DOI: 10.1042/BST0371254
  33. Katsarou K., Tsitoura P., Georgopoulou U. K5/ERK5/mef2: a novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. Biochim.Biophys. Acta. 2011; 1813 (10): 1854–1862. DOI: 10.1016/j.bbamcr.2011.06.015
  34. Karabiyik C., Vicinanza M., Rubinsztein D.C. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK- dependent manner. Dev. Cell. 2021; 56 (13): 1961–1975. DOI: 10.1016/j.devcel.2021.05.010
  35. Giaimo B.D., Borggrefe T. Introduction to molecular mechanisms in notch signal transduction and disease pathogenesis. Adv. Exp. Med. Biol. 2018: 1066: 3–30. DOI: 10.1007/978-3-319-89512-3_1
  36. Gude N., Sussman M. Notch signaling and cardiac repair. J. Molecul. Cell. Cardiol. 2012; 52 (6): 1226–1232. DOI: 10.1016/j.yjmcc.2012.03.007
  37. Martinez Arias A., Zecchini V., Brennan K. CSL-independent Notch signaling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 2002; 12 (5): 524–533. DOI: 10.1016/s0959-437x(02)00336-2
  38. Li D., Masiero M. The Notch Jagged1 as a target for anti-tumor therapy. Front. Oncol. 2014; 4: Article 254. DOI: 10.3389/fonc.2014.00254
  39. D’Souza B., Meloty-Kapella L., Weinmaster G. Canonical and non-canonical notch ligands. Curr. Top. Develop. Biol. 2010; 92: 73–129. DOI: 10.1016/S0070-2153(10)92003-6
  40. Guruharsha K.G., Kankel M.W., Artavanis-Tsakonas S. The notch signalling system: recent iinsights into the complexity of a conserved pathway. Nat. Rev. Genet. 2012; 13 (9): 654–666. DOI: 10.1038/nrg3272
  41. Luca V.C., Jude K.M., Pierce N.W., Nachury M.V., Fischer S., Garcia K.C. Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science. 2015; 347 (6224): 847–853. DOI: 10.1126/science.1261093
  42. Harmansa S., Affolter M. Protein binders and their applications in developmental biology. Development. 2018; 145 (2): dev148874. DOI: 10.1242/dev.148874
  43. Greenwald I. Notch and the awesome power of genetics. Genetics. 2012; 191 (3): 655–669. DOI:10.1534/genetics.112.141812
  44. Liu Z.J., Shirakawa T., Li Y., Soma A., Oka M., Dotto G.P., et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Molecul. Cell. Biol. 2003; 23 (1): 14–25. DOI: 10.1128/MCB.23.1.14-25.2003
  45. Kim P.G., Albacker C.E., Lu Y.F., Jang I.H., Lim Y., Heffner G.C. et al. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proc. Nat. Acad. Sci. USA. 2013; 110 (2): E141–E150. DOI:10.1073/pnas.1214361110
  46. Tetzlaff F., Fischer A. Control of blood vessel formation by notch signaling. Adv. Exp. Med. Biol. 2018; 1066: 319–338. DOI: 10.1007/978-3-319-89512-3_16
  47. Siekmann A.F., Lawson N.D. Notch signalling and the regulation of angiogenesis. Cell. Adhesion & Migration. 2007; 1 (2): 104–106. DOI: 10.4161/cam.1.2.4488
  48. Zachary I., Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 2001; 49 (3): 568–581. DOI: 10.1016/S0008-6363(00)00268-6
  49. Zhang R., Li S., Schippers K., Eimers B., Niu J., Hornung B.V. et al. Unraveling the impact of AXIN1 mutations on HCC development: Insights from CRISPR/Cas9 repaired AXIN1-mutant liver cancer cell lines. PLOS ONE. 2024; 19 (6): e0304607. DOI: 10.1371/journal. pone.0304607
  50. Zhou B., Lin W., Long Y., Yang Y., Zhang H., Wu K., Chu Q. Notch signaling pathway: architecture, disease, and therapeutics. Signal. Transduct. Target. Ther. 2022; 7 (1): 95. DOI: 10.1038/s41392-022-00934-y.2022
  51. Piggott K., Deng J., Warrington K., Younge B., Kubo J.T., Desai M. et al. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation. 2011; 123 (3): 309–318. DOI: 10.1161/CIRCULATIONAHA.110.936203
  52. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008; 8: 958–969. DOI: 10.1038/ nri2448
  53. Singla R.D., Wang J., Singla D.K. Regulation of Notch 1 signaling in THP–1cells enhances M2 macrophage differentiation. Am. J. Physiol. Heart Circ. Physiol. 2014; 307 (11): 1634–1642. DOI: 10.1152/ajpheart.00896.2013
  54. Tkachuk V.A., Plekhanova O.S, Parfyonova Y.V. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can. J. Physiol. Pharmacol. 2009; 87 (4): 231–251. DOI: 10.1139/Y08-113
  55. Beloglazova I., Stepanova V., Zubkova E., Dergilev K., Koptelova N., Tyurin-Kuzmin P.A., et al. Mesenchymal stromal cells enhance self- assembly of a HUVEC tubular network through uPA-uPAR/VEGFR2/integrin/NOTCH crosstalk. Biochimica et Biophysica Acta (BBA). Molecular Cell Research. 2022; 1869 (1): 119157. DOI: 10.1016/j.bbamcr.2021.119157
  56. Белоглазова И.Б., Зубкова Е.С., Дергилев К.В., Ратнер Е.И., Гусева А.А., Меньшиков М.Ю., Парфенова Е.В. Участие VEGF в регуляции неканонического сигнального пути Notch в клетках эндотелия. Кардиологический вестник. 2022; 17 (2): 33–39. DOI: 10/17116/ Cardiobulletin20221702133
  57. Ramirez Williams L, Brüggemann K., Hubert M., Achmad N., Kiesel L., Schäfer S.D., et al. γ-Secretase inhibition affects viability, apoptosis, and the stem cell phenotype of endometriotic cells. Acta Obstet. Gynecol. Scand. 2019; 98 (12): 1565–1574.
  58. Zi Guo, Zhaohui Mo. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J. Tissue Eng. Regen. Med. 2020; 14: 869–883. DOI: 10.1002/term.3053
****
  1. Lim X.R., Harraz O.F. Mechanosensing by Vascular Endothelium. Annu. Rev. Physiol. 2024; 86: 71–97. DOI: 10.1146/annurev-physiol-042022-030946
  2. Jurj A., Ionescu C., Berindan-Neagoe I., Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J. Exp. Clin. Cancer Res. 2022; 41 (1): 276. DOI: 10.1186/s13046-022-02484-1
  3. Vittum Z., Cocchiaro S., Mensah S.A. Basal endothelial glycocalyx’s response to shear stress: a review of structure, function, and clinical implications. Front. Cell. Dev. Biol. 2024; 12: 1371769. DOI: 10.3389/fcell.2024.1371769
  4. Cygan V.N., Sannikov A.B. Molecular sensors of shear stress transduction of vascular wall endothelial cells. Clinical Physiology of Circulation. 2025; 22 (1): 33–46 (in Russ.). DOI: 10.24022/1814-6910-2025-22-1-33-46
  5. He L., Zhang C.L., Chen Q., Wang L., Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol. Ther. 2022; 235: 108152. DOI: 10.1016/j.pharmthera.2022.108152
  6. Nunes K.P., R.C. Webb. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases. 2021; 12 (5– 6): 458–469. DOI: 10.1080/21541248.2020.1822721
  7. Liu Yu., Chen J., Fontes S. K., Bautista E.N., Cheng Zh. Physiological and pathological roles of protein kinase A in the heart. Cardiovasc. Res. 2021; 118 (2): 386–398. DOI: 10.1093/cvr/cvab008
  8. Hassan D., Menges C.W., Testa J.R., Bellacosa A. AKT kinases as therapeutic targets. J. Experim. Clin. Cancer Research. 2024; 43 (1): 313. DOI: 10.1186/s13046-024-03207-4
  9. Newton A.C. Protein kinase C: perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 2018; 53 (2): 208–230. DOI: 10.1080/10409238.2018.1442408
  10. Chen L., Qu H., Liu B., Chen B.-C., Yang Zh., Shi D.-Z., Zhang Y. et al. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front. Physiol. 2024; 15:1432719. DOI: 10.3389/fphys.2024.1432719
  11. McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Montalto G., Cervello M. et al. Mutations and deregulation of Ras/Raf/MEK/ ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget. 2012; 3 (9): 954–987. DOI: 10.18632/oncotarget.652
  12. Jakubowski H., Witucki Ł. Homocysteine metabolites, endothelial dysfunction, and cardiovascular disease. Int. J. Mol. Sci. 2025; 26 (2): 746. DOI: 10.3390/ijms26020746
  13. Bronner D.N., O’Riordan M.X. Measurement of mitochondrial DNA release in response to ER stress. Bio-Protocol. 2020; 6 (12): e1839. DOI: 10.21769/BioProtoc.1839
  14. Power G., Ferreira-Santos L., Martinez-Lemus L.A., Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 2024; 327 (4): H989–H1003. DOI: 10.1152/ajpheart.00431.2024
  15. Orton R.J., Sturm O.E., Vyshemirsky V., Calder M., Gilbert D.R., Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 2005; 392 (Pt. 2): 249–261. DOI: 10.1042/BJ20050908
  16. Boureux A., Vignal E., Faure S., Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Molec. Biol. Evolut. Oxford University Press. 2007; 24 (1): 203–216. DOI: 10.1093/molbev/msl145
  17. Ang M.J., Kim J., Lee S., Kim S.H., Kim J.-Ch., Jeon T. et al. Transcriptome profiling reveals novel candidate genes related to hippocampal dysfunction in SREBP-1c knockout mice. Int. J. Mol. Sci. 2020; 21 (11): 4131. DOI: 10.3390/ijms21114131
  18. Zhou J., Li Yi-S., Chien Sh. Shear stress – initiated signaling and its regulation of endothelial function. Arterioscler., Thromb., Vasc. Biol. 2014; 18: 2191–2198. DOI: 10.1161/ATVBAHA.114.303422
  19. Cheng H., Zhong W., Wang L., Zhang Q., Ma Xi, Wang Y. et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed. Pharmacother. 2023; 158: 114198. DOI: 10.1016/j.biopha.2022.114198
  20. Burridge K. Focal adhesions: a personal perspective on a half century of progress. FEBS J. 2017; 284 (20): 3355–3361. DOI: 10.1111/ febs.14195
  21. Wrighton K.H. Cell signalling: EGF signalling – it’s all in SHC1’s timing. Natur. Rev. Molecul. Cell. Biol. 2013; 14 (8): 463. DOI: 10.1038/ nrm3630
  22. Toda J., Ichii M., Oritani K., Shibayama H., Tanimura A. et al. Signal-transducing adapter protein-1 is required for maintenance of leukemic stem cells in CML. Oncogene. 2020; 39 (34): 5601–5615. DOI: 10.1038/s41388-020-01387-9
  23. Ichii M., Oritani K., Toda J., Hosen N., Matsuda T., Kanakura Yu.. Signal-transducing adaptor protein-1 and protein-2 in hematopoiesis and diseases. Exp. Hematol. 2021; 105: 10–17. DOI: 10.1016/j.exphem.2021.11.002
  24. Shi Y., Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113 (6): 685–700. DOI: 10.1016/s0092- 8674(03)00432-x
  25. Huminiecki L., Goldovsky L., Freilich S., Moustakas A., Ouzounis C., Heldin C.H. Emergence, development and diversification of the TGF- beta signalling pathway within the animal kingdom. BMC Evolut. Biol. 2009; 9: 28. DOI: 10.1186/1471-2148-9-28
  26. Canalis E., Economides A.N., Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 2003; 24 (2): 218– 235. DOI: 10.1210/er.2002-0023
  27. Qin B.Y., Chacko B.M., Lam S.S., de Caestecker M.P., Correia J.J., Lin K. Structural basis of Smad1 activation by receptor kinase phosphorylation. Molecular Cell. 2011; 8 (6): 1303–1312. Available at: https://www.cell.com/molecular-cell/pdf/S1097-2765(01)00417-8.pdf.
  28. Saxton R.A., Sabatini D.M. mTOR Signaling in growth, metabolism, and disease. Cell. 2017; 168 (6): 960–976. DOI: 10.1016/j.cell.2017.02.004
  29. Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011; 189 (4): 1177–1201. DOI: 10.1534/genetics.111.133363
  30. Andrabi S.M., Sharma N.S., Karan A., Shahriar S.M.S., Cordon B., Ma B., Nitric oxide: physiological functions, delivery, and biomedical applications. J. Adv. Sci. (Weinh). 2023; 10 (30): e2303259. DOI: 10.1002/advs.202303259
  31. Diao D., Wang L., Wan J., Chen Zh., Peng J., Liu H. et al. MEK5 overexpression is associated with the occurrence and development of colorectal cancer. BMC Cancer. 2016; 16: 302. Available at: https://www.bmccancer.biomedcentral.com.
  32. Roberts O.L., Holmes K., Muller J., Cross D.A., Cross M.J. ERK5 and the regulation of endothelial cell function. Biochem. Soc. Trans. 2009; 37 (6): 1254–1259. DOI: 10.1042/BST0371254
  33. Katsarou K., Tsitoura P., Georgopoulou U. K5/ERK5/mef2: a novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. Biochim.Biophys. Acta. 2011; 1813 (10): 1854–1862. DOI: 10.1016/j.bbamcr.2011.06.015
  34. Karabiyik C., Vicinanza M., Rubinsztein D.C. Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK- dependent manner. Dev. Cell. 2021; 56 (13): 1961–1975. DOI: 10.1016/j.devcel.2021.05.010
  35. Giaimo B.D., Borggrefe T. Introduction to molecular mechanisms in notch signal transduction and disease pathogenesis. Adv. Exp. Med. Biol. 2018: 1066: 3–30. DOI: 10.1007/978-3-319-89512-3_1
  36. Gude N., Sussman M. Notch signaling and cardiac repair. J. Molecul. Cell. Cardiol. 2012; 52 (6): 1226–1232. DOI: 10.1016/j.yjmcc.2012.03.007
  37. Martinez Arias A., Zecchini V., Brennan K. CSL-independent Notch signaling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 2002; 12 (5): 524–533. DOI: 10.1016/s0959-437x(02)00336-2
  38. Li D., Masiero M. The Notch Jagged1 as a target for anti-tumor therapy. Front. Oncol. 2014; 4: Article 254. DOI: 10.3389/fonc.2014.00254
  39. D’Souza B., Meloty-Kapella L., Weinmaster G. Canonical and non-canonical notch ligands. Curr. Top. Develop. Biol. 2010; 92: 73–129. DOI: 10.1016/S0070-2153(10)92003-6
  40. Guruharsha K.G., Kankel M.W., Artavanis-Tsakonas S. The notch signalling system: recent iinsights into the complexity of a conserved pathway. Nat. Rev. Genet. 2012; 13 (9): 654–666. DOI: 10.1038/nrg3272
  41. Luca V.C., Jude K.M., Pierce N.W., Nachury M.V., Fischer S., Garcia K.C. Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science. 2015; 347 (6224): 847–853. DOI: 10.1126/science.1261093
  42. Harmansa S., Affolter M. Protein binders and their applications in developmental biology. Development. 2018; 145 (2): dev148874. DOI: 10.1242/dev.148874
  43. Greenwald I. Notch and the awesome power of genetics. Genetics. 2012; 191 (3): 655–669. DOI:10.1534/genetics.112.141812
  44. Liu Z.J., Shirakawa T., Li Y., Soma A., Oka M., Dotto G.P., et al. Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Molecul. Cell. Biol. 2003; 23 (1): 14–25. DOI: 10.1128/MCB.23.1.14-25.2003
  45. Kim P.G., Albacker C.E., Lu Y.F., Jang I.H., Lim Y., Heffner G.C. et al. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proc. Nat. Acad. Sci. USA. 2013; 110 (2): E141–E150. DOI:10.1073/pnas.1214361110
  46. Tetzlaff F., Fischer A. Control of blood vessel formation by notch signaling. Adv. Exp. Med. Biol. 2018; 1066: 319–338. DOI: 10.1007/978-3-319-89512-3_16
  47. Siekmann A.F., Lawson N.D. Notch signalling and the regulation of angiogenesis. Cell. Adhesion & Migration. 2007; 1 (2): 104–106. DOI: 10.4161/cam.1.2.4488
  48. Zachary I., Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 2001; 49 (3): 568–581. DOI: 10.1016/S0008-6363(00)00268-6
  49. Zhang R., Li S., Schippers K., Eimers B., Niu J., Hornung B.V. et al. Unraveling the impact of AXIN1 mutations on HCC development: Insights from CRISPR/Cas9 repaired AXIN1-mutant liver cancer cell lines. PLOS ONE. 2024; 19 (6): e0304607. DOI: 10.1371/journal. pone.0304607
  50. Zhou B., Lin W., Long Y., Yang Y., Zhang H., Wu K., Chu Q. Notch signaling pathway: architecture, disease, and therapeutics. Signal. Transduct. Target. Ther. 2022; 7 (1): 95. DOI: 10.1038/s41392-022-00934-y.2022
  51. Piggott K., Deng J., Warrington K., Younge B., Kubo J.T., Desai M. et al. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation. 2011; 123 (3): 309–318. DOI: 10.1161/CIRCULATIONAHA.110.936203
  52. Mosser D.M., Edwards J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008; 8: 958–969. DOI: 10.1038/ nri2448
  53. Singla R.D., Wang J., Singla D.K. Regulation of Notch 1 signaling in THP–1cells enhances M2 macrophage differentiation. Am. J. Physiol. Heart Circ. Physiol. 2014; 307 (11): 1634–1642. DOI: 10.1152/ajpheart.00896.2013
  54. Tkachuk V.A., Plekhanova O.S, Parfyonova Y.V. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can. J. Physiol. Pharmacol. 2009; 87 (4): 231–251. DOI: 10.1139/Y08-113
  55. Beloglazova I., Stepanova V., Zubkova E., Dergilev K., Koptelova N., Tyurin-Kuzmin P.A., et al. Mesenchymal stromal cells enhance self- assembly of a HUVEC tubular network through uPA-uPAR/VEGFR2/integrin/NOTCH crosstalk. Biochimica et Biophysica Acta (BBA). Molecular Cell Research. 2022; 1869 (1): 119157. DOI: 10.1016/j.bbamcr.2021.119157
  56. Beloglazova I.B., Zubkova E.S., Dergilev K.V., Ratner E.I., Guseva A.A., Men’shikov M.YU., Parfenova E.V.The involvement of VEGF in the regulation of the non-canonical Notch signaling pathway in endothelial cells. Russian Kardiology Bulletin. 2022; 17 (2): 33–39 (in Russ.). DOI: 10/17116/Cardiobulletin20221702133
  57. Ramirez Williams L, Brüggemann K., Hubert M., Achmad N., Kiesel L., Schäfer S.D., et al. γ-Secretase inhibition affects viability, apoptosis, and the stem cell phenotype of endometriotic cells. Acta Obstet. Gynecol. Scand. 2019; 98 (12): 1565–1574.
  58. Zi Guo, Zhaohui Mo. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J. Tissue Eng. Regen. Med. 2020; 14: 869–883. DOI: 10.1002/term.3053

About Authors

  • Vasily N. Tsygan, Dr. Med. Sci., Professor, Academician of the Russian Academy of Natural Sciences, Head of the department of pathological physiology after V.V. Pashutin; ORCID
  • Alexander B. Sannikov, Cand. Med. Sci., Associate Professor, Angiologist, Vascular Surgeon; ORCID

 If you found mistakes, select text and press Alt+A