Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Applied aspects of magnetic resonance and ultrasound diagnostics of intracranial venous congestion in extracranial venous blood flow disorders

Authors: Bondarchuk D.V.1 2, Semenov S.E.1, Malkov I.N.3, Shatokhina M.G.4

Company:
1 Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
2Scientific and Practical Clinical Center for Diagnostics and Telemedicine of the Moscow Department of Health, Moscow, Russian Federation
3 Kuzbass Regional Clinical Hospital n.a. S.V. Belyaev, Kemerovo, Russian Federation
4 The Almazov National Medical Research Centre, St. Petersburg, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2025-22-2-177-192

UDC: 616.831-005-073.43

Link: Clinical Physiology of Blood Circulaiton. 2025; 22 (2): 177-192

Quote as: Bondarchuk D.V., Semenov S.E., Malkov I.N., Shatokhina M.G. Applied aspects of magnetic resonance and ultrasound diagnostics of intracranial venous congestion in extracranial venous blood flow disorders. Clinical Physiology of Circulation. 2025; 22 (2): 177–192 (in Russ.). DOI: 10.24022/1814-6910-2025-22-2-177-192

Received / Accepted:  19.05.2025 / 30.05.2025

Full text:
Subscribe 🔒

Abstract

The purpose of the study was to determine significant indicator parameters of remodeling and hemodynamics of the jugular and extrajugular collectors of venous blood from the brain in non-thrombotic obstruction and hypoplasia using non-invasive radiological diagnostic methods (MR venography and ultrasound scanning).

Material and methods. The study included data from 114 people (50 with external compression stenosis, 27 with hypoplasia, 6 after ligation/removal of the internal jugular veins (IJV) on one side and 31 in the control group). The clinical condition was assessed as the sum of syndromes of idiopathic (isolated) intracranial hypertension (cephalgia, focal neurological deficit, epileptic syndrome, vestibulopathic syndrome, asthenic syndrome). All patients and healthy volunteers underwent an ultrasound examination of the IJV at the J2 level and at the level of stenosis, the common carotid artery and vertebral artery (at the V2 level), as well as MR venography of the neck veins and lateral dural sinuses.

Results. Compensation for the outflow of blood from the brain with external compression stenosis or hypoplasia of one internal jugular vein occurs by expansion of the opposite IJV, as well as the vertebral veins and plexuses to a limited extent for 2 months, after which clinical manifestations of intracranial congestive hypertension develop (cerebral venous dystonia and venous encephalopathy). The threshold value of the venous-arterial balance (VAB), as an indicator of the contribution of IJV to outflow of blood from the brain for development of clinical manifestations of intracranial hypertension of a venous nature, is determined at the level of 40%. The VAB calculator has been developed for mobile phone: “Web application for calculating cerebral venous-arterial balance (VAB) of blood flow at the extracranial level” (in Telegram at the link https://t.me/VABCalculatorBot).

Conclusion. With a total VAP <40%, “Venous congestion” is diagnosed with clinical manifestations of intracranial venous hypertension. With a total VAP in the range from 40% to 59%, “Risk of venous congestion” is diagnosed, which may or may not manifest clinically with sufficient positive remodeling of the venous vessels of the neck.

References

  1. Семенов С.Е., Бондарчук Д.В., Коков А.Н., Шатохина М.Г. Индикаторы нетромботических нарушений церебрального венозного дренажа по экстракраниальным венам. Сибирский научный медицинский журнал. 2024; 44 (1): 76–87. DOI: 10.18699/SSMJ20240108
  2. Zhou D., Meng R., Zhang X., Guo L., Li S., Wu W. et al. Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting. Eur. J. Neurol. 2018; 25 (2): 365–e13. DOI: 10.1111/ene.13512
  3. Bateman A.R., Bateman G.A., Barber T. The relation-ship between cerebral blood flow and venous sinus pressure: can hyperemia induce idiopathic intracranial hypertension? Fluids Barriers CNS. 2021; 18 (1): 5. DOI: 10.1186/s12987-021-00239-2
  4. Семенов С.Е., Шатохина М.Г., Бондарчук Д.В., Молдавская И.В. К проблеме диагностики начальных проявлений недостаточности венозного церебрального кровообращения. Клиническая физиология кровообращения. 2022; 19 (3): 266–279. DOI: 10.24022/ 1814-6910-2022-19-3-266-279
  5. Семенов С.Е., Бондарчук Д.В., Малков И.Н., Шатохина М.Г. Ремоделирование вен шеи и венозно-артериальный баланс при наружном компрессионном стенозе и гипоплазии внутренних яремных вен. Ангиология и сосудистая хирургия. Журнал им. академика А.В. Покровского. 2024; 30 (4): 18–31. DOI: 10.33029/1027-6661-2024-30-4-18-31
  6. Fargen K.M., Midtlien J.P., Margraf C.R., Hui F.K. Idiopathic intracranial hypertension pathogenesis: The jugular hypothesis. Interv. Neuroradiol. 2024; 8: 15910199241270660. DOI: 10.1177/15910199241270660
  7. Fargen K.M., Midtlien J.P., Margraf C., Kiritsis N.R., Chang E., Hui F. Dynamic internal jugular vein venography: a descriptive study in 89 patients with suspected cerebral venous outflow disorders. J. Neurointerv. Surg. 2025; 17 (6): 646–652. DOI: 10.1136/jnis-2024-021734
  8. Семенов С.Е., Молдавская И.В., Коваленко А.В., Хромов А.А., Хромова А.Н., Жучкова Е.А. и др. Радиологические критерии стенозирования брахиоцефальных вен и клиническая выраженность церебрального венозного застоя. Клиническая физиология кровообращения. 2013; 2: 35–44.
  9. Dollinger P., Böhm J., Arányi Z. Combined nerve and vascular ultrasound in thoracic outlet syndrome: A sensitive method in identifying the site of neurovascular compression. PLoS One. 2022; 17 (5): e0268842. DOI: 10.1371/journal.pone.0268842
  10. Kefayati S., Amans M., Faraji F., Ballweber M., Kao E., Ahn S. et al. The manifestation of vortical and secondary flow in the cerebral venous outflow tract: An in vivo MR velocimetry study. J. Biomech. 2017; 50: 180–187. DOI: 10.1016/j.jbiomech.2016.11.041
  11. İlhan Z., Açıkgözoğlu S., Demir O. Associations between Doppler internal jugular vein blood flow and transverse sinus stasis detected by magnetic resonance imaging. J. Ultrasound. Med. 2021; 40 (8): 1591–1601. DOI: 10.1002/jum.15541
  12. Семенов С.Е., Бондарчук Д.В., Малков И.Н., Шатохина М.Г. Ультразвуковая и магнитно-резонансная семиотика компрессий и гипоплазии внутренних яремных вен. Комплексные проблемы сердечно-сосудистых заболеваний. 2023; 12 (1): 72–83. DOI: 10.17802/2306-1278-2023-12-1-72-83
  13. De Sio S., Mandolesi S., Niglio T., D'Alessandro A., D'Alessandro A., Vitarelli A. et al. Risk of jugular compression blocks in workers exposed to prolonged upright posture. Ann. Ig. 2016; 28 (3): 227–232. DOI: 10.7416/ai.2016.2101
  14. Шумилина М.В.(ред.) Ультразвуковые исследования при головных болях у пациентов с сердечно-сосудистой патологией. Учебно- методическое руководство. М.: ФГБУ «НМИЦ ССХ им. А.Н. Бакулева»; 2022.
  15. Семенов С.Е., Юркевич Е.А., Молдавская И.В., Шатохина М.Г., Семенов А.С. Диагностика венозного ишемического инсульта. Часть II (алгоритмы и семиотика лучевой диагностики. Ограничения использования в клинической практике). Комплексные проблемы сердечно-сосудистых заболеваний. 2019; 8 (3): 104–115. DOI: 10.17802/2306-1278-2019-8-3-104-115
  16. Семенов С.Е. Лучевая диагностика венозного ишемического инсульта. СПб.: Фолиант; 2018.
  17. Paoletti M., Germani G., De Icco R., Asteggiano C., Zamboni P., Bastianello S. Intra- and extracranial MR venography: Technical notes, clinical application, and imaging development. Behav. Neurol. 2016; 2016: 2694504. DOI: 10.1155/2016/2694504
  18. Холоденко М.И. Расстройства венозного кровообращения в мозгу. М.: Медгиз; 1963.
  19. Бокерия Л.А., Бузиашвили Ю.И., Шумилина М.В. Нарушения венозного церебрального кровообращения у больных с сердечно- сосудистой патологией. Головная боль, ишемия мозга, артериосклероз. М.: НЦССХ им. А.Н. Бакулева; 2003.
  20. Bateman G.A., Subramanian G.M., Yap S.L., Bateman A.R. The incidence of obesity, venous sinus stenosis and cerebral hyperaemia in children referred for MRI to rule out idiopathic intracranial hypertension at a tertiary referral hospital: a 10-year review. Fluids Barriers CNS. 2020; 17 (1): 59. DOI: 10.1186/s12987-020-00221-4
  21. Amans M.R., De Leacy R.A. Golden age of cerebral venous and CSF disorders. J. Neurointerv. Surg. 2024; 16 (11): 1067–1068. DOI:10.1136/jnis-2024-022553
  22. Корнеева Н.В., Ловрикова М.А., Жмеренецкий К.В. Методология оценки венозного оттока при проведении ультразвукового сканирования брахиоцефальных сосудов: состояние проблемы. Кардиоваскулярная терапия и профилактика. 2024; 23 (6): 92–100. DOI: 10.15829/1728-8800-2024-3913
  23. Li M, Sun Y., Chan C.C., Fan C., Ji X., Meng R. Internal jugular vein stenosis associated with elongated styloid process: five case reports and literature review. BMC Neurol. 2019; 19 (1): 112. DOI: 10.1186/s12883-019-1344-0
  24. Zivadinov R., Poloni G.U., Marr K., Schirda C.V., Magnano C.R., Carl E. et al. Decreased brain venous vasculature visibility on susceptibility- weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurol. 2011; 11: 128. DOI: 10.1186/1471-2377-11-128
  25. Бердичевский М.Я. Венозная дисциркуляторная патология головного мозга. М.: Медицина; 1989.
****
  1. Semenov S.E., Bondarchuk D.V., Kokov A.N., Shatokhina M.G. Indicators of non-thrombotic disorders of cerebral venous drainage in extracranial veins. Siberian Scientific Medical Journal. 2024; 44 (1): 76–87 (in Russ.). DOI: 10.18699/SSMJ20240108
  2. Zhou D., Meng R., Zhang X., Guo L., Li S., Wu W. et al. Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting. Eur. J. Neurol. 2018; 25 (2): 365–e13. DOI: 10.1111/ene.13512
  3. Bateman A.R., Bateman G.A., Barber T. The relation-ship between cerebral blood flow and venous sinus pressure: can hyperemia induce idiopathic intracranial hypertension? Fluids Barriers CNS. 2021; 18 (1): 5. DOI: 10.1186/s12987-021-00239-2
  4. Semenov S.E., Shatokhina M.G., Bondarchuk D.V., Moldavskaya I.V. On the problem of diagnosing the initial manifestations of insufficiency of cerebral venous circulation. Clinical Physiology of Circulation. 2022; 19 (3): 266–279 (in Russ.). DOI: 10.24022/1814-6910-2022-19-3-266-279
  5. Semenov S.E., Bondarchuk D.V., Malkov I.N., Shatokhina M.G. Remodeling of the neck veins and venous-arterial balance in extrinsic compression stenosis and hypoplasia of the internal jugular veins. Angiology and Vascular Surgery. 2024; 30 (4): 18–31 (in Russ.). DOI: 10.33029/1027-6661-2024-30-4-18-31
  6. Fargen K.M., Midtlien J.P., Margraf C.R., Hui F.K. Idiopathic intracranial hypertension pathogenesis: The jugular hypothesis. Interv. Neuroradiol. 2024; 8: 15910199241270660. DOI: 10.1177/15910199241270660
  7. Fargen K.M., Midtlien J.P., Margraf C., Kiritsis N.R., Chang E., Hui F. Dynamic internal jugular vein venography: a descriptive study in 89 patients with suspected cerebral venous outflow disorders. J. Neurointerv. Surg. 2025; 17 (6): 646–652. DOI: 10.1136/jnis-2024-021734
  8. Semenov S.E., Moldavskaya I.V., Kovalenko A.V., Khromov A.A., Khromova A.N., Zhuchkova E.A. et al. Radiological criteria for stenosis of the brachiocephalic veins and the clinical severity of cerebral venous stasis. Clinical Physiology of Circulation. 2013; 2: 35–44 (in Russ.).
  9. Dollinger P., Böhm J., Arányi Z. Combined nerve and vascular ultrasound in thoracic outlet syndrome: A sensitive method in identifying the site of neurovascular compression. PLoS One. 2022; 17 (5): e0268842. DOI: 10.1371/journal.pone.0268842
  10. Kefayati S., Amans M., Faraji F., Ballweber M., Kao E., Ahn S. et al. The manifestation of vortical and secondary flow in the cerebral venous outflow tract: An in vivo MR velocimetry study. J. Biomech. 2017; 50: 180–187. DOI: 10.1016/j.jbiomech.2016.11.041
  11. İlhan Z., Açıkgözoğlu S., Demir O. Associations between Doppler internal jugular vein blood flow and transverse sinus stasis detected by magnetic resonance imaging. J. Ultrasound. Med. 2021; 40 (8): 1591–1601. DOI: 10.1002/jum.15541
  12. Semenov S.E., Bondarchuk D.V., Malkov I.N., Shatokhina M.G. Ultrasound and magnetic resonance of extrinsic stenosis and hypoplasia of internal jugular veins. Complex Issues of Cardiovascular Diseases. 2023; 12 (1): 72–83 (in Russ.). DOI: 10.17802/2306-1278-2023-12-1-72-83
  13. De Sio S., Mandolesi S., Niglio T., D'Alessandro A., D'Alessandro A., Vitarelli A. et al. Risk of jugular compression blocks in workers exposed to prolonged upright posture. Ann. Ig. 2016; 28 (3): 227–232. DOI: 10.7416/ai.2016.2101
  14. Shumilina M.V. (ed.) Ultrasound examinations for headaches in patients with cardiovascular pathology. Tutorial. Moscow; 2022 (in Russ.).
  15. Semenov S.E., Yurkevich E.A., Moldavskaya I.V., Shatokhina M.G., Semenov A.S. Diagnosis of venous ischemic stroke. Part II (algorithms and semiology of diagnostic radiology. Limitations in clinical practice). Complex Issues of Cardiovascular Diseases. 2019; 8 (3): 104–115 (in Russ.). DOI:10.17802/2306-1278-2019-8-3-104-115
  16. Semenov S.E. Radiologic diagnosis of venous ischemic stroke. Saint-Petersburg; 2018 (in Russ.).
  17. Paoletti M., Germani G., De Icco R., Asteggiano C., Zamboni P., Bastianello S. Intra- and extracranial MR venography: Technical notes, clinical application, and imaging development. Behav. Neurol. 2016; 2016: 2694504. DOI: 10.1155/2016/2694504
  18. Kholodenko M.I. Disorders of venous circulation in the brain. Moscow; 1963 (in Russ.).
  19. Bockeria L.A., Buziashvili Yu.I., Shumilina M.V. Disorders of venous cerebral circulation in patients with cardiovascular pathology. Headache, cerebral ischemia, arteriosclerosis. Moscow; 2003 (in Russ.).
  20. Bateman G.A., Subramanian G.M., Yap S.L., Bateman A.R. The incidence of obesity, venous sinus stenosis and cerebral hyperaemia in children referred for MRI to rule out idiopathic intracranial hypertension at a tertiary referral hospital: a 10-year review. Fluids Barriers CNS. 2020; 17 (1): 59. DOI: 10.1186/s12987-020-00221-4
  21. Amans M.R., De Leacy R.A. Golden age of cerebral venous and CSF disorders. J. Neurointerv. Surg. 2024; 16 (11): 1067–1068. DOI:10.1136/jnis-2024-022553
  22. Korneeva N.V., Lovrikova M.A., Zhmerenetsky K.V. Methodology for assessing venous outflow during ultrasound scanning of the brachiocephalic vessels: state of the problem. Cardiovascular Therapy and Prevention. 2024; 23 (6): 92–100 (in Russ.). DOI: 10.15829/1728-8800-2024-3913
  23. Li M, Sun Y., Chan C.C., Fan C., Ji X., Meng R. Internal jugular vein stenosis associated with elongated styloid process: five case reports and literature review. BMC Neurol. 2019; 19 (1): 112. DOI: 10.1186/s12883-019-1344-0
  24. Zivadinov R., Poloni G.U., Marr K., Schirda C.V., Magnano C.R., Carl E. et al. Decreased brain venous vasculature visibility on susceptibility- weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurol. 2011; 11: 128. DOI: 10.1186/1471-2377-11-128
  25. Berdichevskiy M.Ya. Venous cerebrovascular pathology. Moscow; 1989 (in Russ.).

About Authors

  • Dmitrij V. Bondarchuk, Radiologist; ORCID
  • Stanislav E. Semenov, Dr. Med. Sci., Leading Researcher; ORCID
  • Ivan N. Malkov, Radiologist; ORCID
  • Mariya G. Shatokhina, Cand. Med. Sci., Assistant Professor; ORCID

 If you found mistakes, select text and press Alt+A