Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Features of changes in the hemodynamic characteristics of the mainand tissue blood flow in the pathological tortuosity of the internal carotidarteries according to phase-contrast and perfusion magnetic resonance imaging

Authors: Yu.A. Stankevich 1, O.B. Bogomyakova 1, L.M. Vasil'kiv 1, A.A. Tulupov 1, 2

Company:
1 Institute International Tomography Center, Siberian Branch of the Russian Academy of Sciences, ul. Institutskaya, 3a, Novosibirsk, 630090, Russian Federation
2Novosibirsk State University, ul. Pirogova, 1, Novosibirsk, 630090, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2019-16-3-217-227

UDC: 616.133.3-007.5-073.756.8:612.15

Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (3): 217-227

Quote as: Stankevich Yu.A., Bogomyakova O.B., Vasil'kiv L.M., Tulupov A.A. Features of changes in the hemodynamic characteristics of the main and tissue blood flow in the pathological tortuosity of the internal carotid arteries according to phase-contrast and perfusion magnetic resonance imaging. Сlinical Physiology of Circulation. 2019; 16 (3): 217–27 (in Russ.). DOI: 10.24022/1814-6910-2019-16-3-217-227

Received / Accepted:  18.07.2019/28.08.2019

Download
Full text:  

Abstract

Objective. To analyze the peculiarities of changes in the main and perfusion blood flow in case of the pathological tortuosity of the internal carotid artery (ICA) using phase-contrast and perfusion MRI.

Material and methods. The study was carried out on the MR-tomograph 1,5 T using a routine protocol, phase contrast and perfusion MR angiography. Focal vascular changes in the brain, indicators of volumetric, linear peak blood flow velocity by the ICA and the values of perfusion characteristics (CBF, CBV, MTT) in its pool were assessed.

Results. The values of the velocity characteristics of the blood flow during the deformation of the ICA, accompanied by the appearance of MR-signs of cerebrovascular insufficiency, were determined; the interrelation of a significant decrease in the blood flow rate and an increase in the severity of dyscirculatory focal brain pathology in the pathology group was revealed. The correlation connections between the values of the bulk velocity of the main blood flow and the regional rate of tissue blood flow were revealed: the frontal lobe of the frontal lobe R = 0.35, the parietal cortex of the parietal lobe R = 0.62, the white matter of the frontal lobe is R = 0.32, the white matter of the parietal lobe is R = 0.33.

Conclusions. Correlations between capillary and main blood flow demonstrate the possibility of using indicators such as blood flow velocity and CBF to assess the main and tissue hemodynamics in assessing the significance of pathological.

References

  1. Edington G.H. Tortuosity of both internal carotid arteries. Br. Med. J. 1901; 2 (2134): 1526–7. DOI: 10.1136/bmj.2.2134.1526
  2. Thrift A.G., Cadilhac D.A., Thayabaranathan T., Howard G., Howard V.J., Rothwell P.M., Donnan G.A. Global stroke statistics. Int. J. Stroke. 2014; 9 (1): 6–18. DOI: 10.1111/ijs.12245
  3. Global Health Estimates: The top 10 causes of death. Geneva: World Health Organization; 2014; fact sheet N310.
  4. Багаев С.Н., Захаров В.Н., Орлов В.А. Основополагающие явления и законы в структурно-функциональной организации сердечно-сосудистой системы. Атеросклероз. 2011; 7 (2): 68–89. [Bagaev S.N., Zakharov V.N., Orlov V.A. Basic phenomena and laws in structural-functional organization of heart-vessel. Atherosclerosis. 2011; 7 (2): 68–89 (in Russ.).]
  5. Куликов В.П., Кирсанов Р.И. Основные закон мерности винтового движения крови в общих сонных артериях у людей. Российский физиологический журнал им. И.М. Сеченова. 2008; 94 (8): 900–8. [Kulikov V.P., Kirsanov R.I. The main patterns of blood screw movement in the common carotid arteries in humans. The Russian Physiological Journal named after I.M. Sechenov. 2008; 94 (8): 900–8 (in Russ.).]
  6. Foin N., Caro C., Dhanjil S. Ultrasound imaging of secondary flows in blood vessels. The Physiological Society, Life Science; 2007: 11.
  7. Прыгова Ю.А., Савельева Л.А., Богомякова О.Б., Тулупов А.А. Оценка гемодинамических свойств кровотока по внутренним сонным артериям в условиях нормы и при патологической извитости с помощью МРТ. Бюллетень сибирской медицины. 2012; 11 (S1): 99–100. [Prygova Yu.A., Saveliyeva L.A., Bogomyakova O.B., Tulupov A.A. MRT estimation of hemodynamic properties of blood circulation in internal carotid arteries under normal conditions and at pathological tortuosity. Bulletin of Siberian Medicine. 2012; 11 (S1): 99–100 (in Russ.).]
  8. Тулупов А.А., Летягин А.Ю., Курбатов В.П., Савелов А.А., Коростышевская А.М., Маслова К.М. и др. Возможности магнитно-резонансной томографии в визуализации периферического кровотока. Вестник Новосибирского государственного университета. Серия: биология, клиническая медицина. 2004; 2 (1): 57–69. [Tulupov A.A., Letyagin A.Yu., Kurbatov V.P., Savelov A.A., Korostyshevskaya A.M., Maslova K.M. et al. Possibilities of magnetic resonance imaging in the visualization of peripheral blood flow. Bulletin of Novosibirsk State University. Series: Biology, Clinical Medicine. 2004; 2 (1): 57–69 (in Russ.).]
  9. Прыгова Ю.А., Савельева Л.А., Богомякова О.Б., Тулупов А.А. Особенности гемодинамики во внутренних сонных артериях, по данным магнитно-резонансной томографии. Вестник Новосибирского государственного университета. Серия: биология, клиническая медицина. 2012; 10 (2): 133–8. [Prygova Yu.A., Saveliyeva L.A., Bogomyakova O.B., Tulupov A.A. Characteristics of arterial blood flow on the internal carotid arteries using magnetic resonance imaging. Bulletin of Novosibirsk State University. Series: Biology, Clinical Medicine. 2012; 10 (2): 133–8 (in Russ.).]
  10. Zhao M., Amin-Hanjani S., Ruland S., Curcio A.P., Ostergren L., Charbel F.T. Regional cerebral blood flow using quantitative MR angiography. Am. J. Neuroradiol. 2007; 28 (8): 1470–3. DOI: 10.3174/ajnr.A0582
  11. Oktar S.O., Yucel C., Karaosmanoglu D., Akkan K., Ozdemir H. et al. Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imagin. Am. J. Neuroradiol. 2006; 27 (2): 363–9.
  12. Cebral J.R., Castro M.A., Putman C.M., Alperin N. Flow-area relationship in internal carotid and vertebral arteries. Physiol. Meas. 2008; 29 (5): 585–94. DOI: 10.1088/0967-3334/29/5/005
  13. Marshall I., Papathanasopoulou P., Wartolowska K. Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiol. Meas. 2004; 25 (3): 691–7.
  14. Ford M.D., Alperin N., Lee S.H., Holdsworth D.W., Steinman D.A. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 2005; 26 (4): 477–88. DOI: 10.1088/0967-3334/26/4/013
  15. Железкова А.А., Скоробогатов Ю.Ю., Филатова О.В. Возрастное изменение диаметра внутренних сонных артерий. Известия Алтайского государственного университета. Биологические науки. 2010; 3 (1): 26–39. [Zhelezkova A.A., Skorobogatov Yu.Yu., Filatova O.V. Age variation of the diameter of the internal carotid arteries. News of Altai State University. Biological Sciences. 2010; 3 (1): 26–39 (in Russ.).]
  16. Del Corso L., Moruzzo D., Conte B., Agelli M., Romanelli A.M. et al. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology. 1998; 49 (5): 361–71.
  17. Пальцева Е.М., Осколкова С.А., Полякова В.О., Крылова Ю.С., Иванова А.Г., Абрамян А.В., Гавриленко А.В. Структура стенки внутренней сонной артерии при патологической извитости. Архив патологии. 2015; 77 (5): 3–8. DOI: 10.17116/patol20157753-8 [Paltseva E.M., Oskolkova S.A., Polyakova V.O., Krylova Yu.S., Ivanova A.G., Abramyan A.V., Gavrilenko A.V. The structure of the internal carotid artery wall in pathological tortuosity. Archive of Pathology. 2015; 77 (5): 3–8 (in Russ.). DOI: 10.17116/patol20157753-8]
  18. Lam W.W.M., Ho S.S.Y., Leung S.F., Wong K.S., Metreweli C., Stenosis R.C. Cerebral blood flow measurement by color velocity imaging in radiation-induced carotid stenosis. Ultrasound. 2003; 22 (10): 1055—60.
  19. Neumann S., Sophocleous F., Kobetic M.D., Hart E.C. et al. Wave intensity analysis in the internal carotid artery of hypertensive subjects using phase-contrast MR angiography and preliminary assessment of the effect of vessel morphology on wave dynamics. Physiol. Meas. 2018; 39 (10): 104003. DOI: 10.1088/1361-6579/aadfc5
  20. Chen J.J., Rosas H.D., Salat D.H. Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage. 2011; 2 (55): 468—78. DOI: 10.1016/j.neuroimage.2010.12.032
  21. Gilkes C.E. Whitfield P.C. Intracranial pressure and cerebral blood flow. Surgery (Oxford). 2007; 12 (25): 530—5. DOI: 10.1016/j.mpsur.2009.02.008
  22. Astrup J., Siesjö B.K., Symon L. Thresholds in cerebral ischemia — the ischemic penumbra. Str. J. Cer. Circ. 1979; 6 (12): 723—5.

About Authors

  • Yuliya A. Stankevich, Cand. Med. Sc., Junior Researcher; orcid.org/0000-0002-7959-5160
  • Ol’ga B. Bogomyakova, Cand. Med. Sc., Junior Researcher; orcid.org/0000-0002-8880-100X
  • Lyubov’ M. Vasil’kiv, Junior Researcher; orcid.org/0000-0003-1838-8130
  • Andrey A. Tulupov, Dr. Med. Sc. Professor of RAS, Chief Researcher, Head of Laboratory; orcid.org/0000-0002-1277-4113

 If you found mistakes, select text and press Alt+A