Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Experience of experimental studies of abdominal aortic aneurysm

Authors: T.R. Tibua, A.Yu. Gorodkov, V.S. Arakelyan

Company:
A.N. Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2019-16-3-244-254

UDC: 616.136-007.64-092.4

Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (3): 244-254

Quote as: Tibua T.R., Gorodkov A.Yu., Arakelyan V.S. Experience of experimental studies of abdominal aortic aneurysm. Clinical Physiology of Circulation. 2019; 16 (3): 244–54 (in Russ.). DOI: 10.24022/1814-6910-2019-16-3-244-254

Received / Accepted:  18.07.2019/19.07.2019

Download
Full text:  

Abstract

The main complication of the abdominal aortic aneurysm (AAA) is its rupture, the pathophysiology of which has not been fully studied. In this case, the gap occurs with not only aneurysms of large, but also small size. So there was a need to study the pathophysiology of aneurysm, and since the 1960s began to develop experimental models of AAA in vivo. In 1960, S.G. Economou et al., for the first time created experimental models of aortic aneurysm in dogs, in 1961 G.A. Gresham, A.N. Howard, investigated the aortic rupture in turkeys [1, 2]. Throughout the history of cardiovascular surgery, many different experimental AAA models have been developed to further correct the disease in patients. Small animal models were used to understand the pathophysiology of the aortic aneurysm needed to develop new methods of conservative treatment. Models of large animals were used for the development of new methods of surgical treatment of AAA. The creation of artificial aortic aneurysms by damaging the vascular wall by various methods led to unpredictable growth rates and the risk of AAA rupture, the development of sacciform aneurysms or pseudoaneurysms. At the same time, morphological similarities between the areas of human and animal aneurysms make it possible to develop new reconstructive interventions on the aorta in the presence of aneurysm. The purpose of this article is a retrospective analysis of different types of experimental models of abdominal aortic aneurysm formation.

References

  1. Economou S.G., Taylor C.B., Beattie E.J., Davis C.B. Persistent experimental aortic aneurysms in dogs. Surgery. 1960; 47: 21–8.
  2. Gresham G.A., Howard A.N. Aortic rupture in the turkey. J. Atheroscler. Res. 1961; 1 (1): 75–80. DOI: 10.1016/s0368-1319(61)80056-2
  3. Conn M.P. Sourcebook of models for biomedical research. Humana Press; 2008. DOI: 10.1007/978-1-59745-285-4
  4. Abildgaard C.F., Harrison J., Johnson C. A. Comparative study of blood coagulation in nonhuman primates. American Physiological Society. J. App. Physiol. 1971; 30: 400–5. DOI: 10.1152/jappl.1971. 30.3.400
  5. Trollope A., Moxon J.V., Moran C.S., Golledge J. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc. Pathol. 2011; 20 (2): 114–23. DOI: 10.1016/j.carpath.2010.01.001
  6. Geurts A.M., Cost G.J., Freyvert Y., Zeitler B., Miller J.C., Choi V.M. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Am. Assoc. Advanc. Sci. 2009; 325 (5939): 433. DOI: 10.1126/science.1172447
  7. Marinov G.R., Marois Y., Paris E., Roby P., Formichi M., Douville Y. et al. Can the infusion of elastase in the abdominal aorta of the Yucatán miniature swine consistently produce experimental aneurysms? J. Invest. Surg. 1997; 10 (3): 129–50. DOI: 10.3109/08941939709032144
  8. Gresham G.A., Howard A.N. Aortic rupture in the turkey. J. Atheroscler. Res. 1961; 1 (1): 75–80. DOI: 10.1016/s0368-1319(61)80056-2
  9. Powell J.T. Models of arterial aneurysm: for the investigation of pathogenesis and pharmacotherapy – a review. Atherosclerosis. 1991; 87: 93–102. DOI: 10.1016/0021-9150(91)90011-q
  10. Tsui J.C. Experimental models of abdominal aortic aneurysms. Open Cardiovasc. Med. J. 2010; 26: 221–30. DOI: 10.2174/1874192401004010221
  11. Quigley M.R., Heiferman K., Kwaan H.C., Vidovich D., Nora P., Cerullo L.J. Laser-sealed arteriotomy: a reliable aneurysm model. J. Neurosurg. 1987; 67: 284–7. DOI: 10.3171/jns.1987.67.2.0284
  12. Molacek J., Treska V., Kobr J., Certik B., Skalicky T., Kuntscher V. et al. Optimization of the model of abdominal aortic aneurysm – experiment in an animal model. J. Vasc. Res. 2009; 46 (1): 1–5. DOI: 10.1159/000135659
  13. Kajimoto M., Shimono T., Hirano K., Miyake Y., Kato N., Imanaka-Yoshida K. et al. Basic fibroblast growth factor slow release stent graft for endovascular aortic aneurysm repair: a canine model experiment. J. Vasc. Surg. 2008; 48 (5): 1306–14. DOI: 10.1016/j.jvs.2008.05.060
  14. Whitbread T., Birch P., Rogers S., Majeed A., Rochester J., Beard J.D., Gaines P. A new animal model for abdominal aortic aneurysms: initial results using a multiple-wire stent. Eur. J. Vasc. Endovasc. Surg. 1996; 11 (1): 90–7. DOI: 10.1016/s1078-5884(96)80141-9
  15. Laborde J.C., Parodi J.C., Clem M.F., Tio F.O., Barone H.D., Rivera F.J. et al. Intraluminal bypass of abdominal aortic aneurysm: feasibility study. Radiological Society of North America. Radiology. 1992; 184 (1): 185–90. DOI: 10.1148/radiology.184.1.1535160
  16. Ammirati M., Ciric I., Rabin E. Induction of experimental aneurysms on the rat common carotid artery using a microsurgical CO2 laser. Microsurgery. 1988; 9 (2): 78–81. DOI: 10.1002/micr.1920090204
  17. Quigley M.R., Tuite G.F., Cozzens J.W. Histology and angiography in a bifurcation aneurysm model. Surg. Neurol. 1988; 30 (6): 445–51. DOI: 10.1016/0090-3019(88)90029-8
  18. Troupp H., Torbjorn R. Methyl-2-cyanoacrylate (Eastman 910) in experimental vascular surgery. With a note on experimental aneurysms. J. Neurosurg. 1964; 21 (12): 1067–9. DOI: 10.3171/jns.1964.21.12.1067
  19. Parodi J.C., Palmaz J.C., Barone H.D. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann. Vasc. Surg. 1991; 5: 491–9. DOI: 10.1007/bf02015271
  20. Dobrin P.B. Animal models of aneurysms. Ann. Vasc. Surg. 1999; 13 (6): 641–8. DOI: 10.1007/s100169900315
  21. Gao L., Hoi Y., Swartz D.D., Kolega J., Siddiqui A., Meng H. Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke. 2008; 39 (7): 2085–90. DOI: 10.1161/strokeaha.107.509422
  22. Trillo A., Haust M.D. Arterial elastic tissue and collagen in experimental post-stenotic dilatation in dogs. Exp. Mol. Pathol. 1975; 23 (3): 473–90. DOI: 10.1016/0014-4800(75)90038-6
  23. Kawaguti M., Hamano A. Numerical study on poststenotic dilation. Biorheology. 1983; 20 (5): 507–18. DOI: 10.3233/BIR-1983-20508
  24. Ojha M., Johnston K.W., Cobbold R.S.C. Evidence of a possible link between poststenotic dilatation and wall shear stress. J. Vasc. Surg. 1990; 11 (1): 127–35. DOI: 10.1067/mva.1990.16935
  25. Zarins C.K., Zatina M.A., Giddens D.P., Ku D.N., Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 1987; 5 (3): 413–20. DOI: 10.1016/0741-5214(87)90048-6
  26. Guzman R.J., Krystowiak A.J., Zarins R.K. Smooth muscle cell, c-fos gene expression precedes shear stressinduced aortic enlargement. Proc. Soc. Vasc. Surg. 1997; 36.
  27. Powell J.T., Greenhalgh R.M. Cellular, enzymatic and genetic factors in the pathogenesis of abdominal aortic aneurysms. J. Vasc. Surg. 1989; 9: 297–304. DOI: 10.1067/mva.1989.vs0090297
  28. Thompson R.W., Geraghty P.J., Lee J.K. Abdominal aortic aneurysms:basic mechanisms and clinical implications. Curr. Probl. Surg. 2002; 39 (2): 110–230. DOI: 10.1067/msg.2002.121421
  29. Gertz S.D., Kurgan A., Eisenberg D. Aneurysm of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo. J. Clin. Invest. 1988; 81 (3): 649–56. DOI: 10.1172/jci113368
  30. Freestone T., Turner R.J., Higman D.J., Lever M.J., Powell J.T. Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler. Thromb. Vasc. Biol. 1997; 17 (1): 10–7. DOI: 10.1161/01.atv.17.1.10
  31. Blumenthal H.T., Lansing A.I., Wheeler P.A. Calcification of the media of the human aorta and its relation to intimal arteriosclerosis, ageing and disease. Am. Heart J. 1945; 29 (1): 136. DOI: 10.1016/0002-8703(45)90615-6
  32. Лазарев Н.В., Левина Э.Н. Вредные вещества в промышленности. Справочник для химиков, инженеров, врачей. Т. 2. Л.: Химия; 1976. [Lasarev N.V., Levina E.N. Harmful substances in the industry. The reference book for chemists, engineers, doctors. Vol. 2. Leningrad; 1976 (in Russ.).]
  33. Anidjar S., Salzmann J.L., Gentric D., Lagneau P., Camilleri J.P., Michel J.B. Elastase-induced experimental aneurysms in rats. Circulation. 1990; 82 (3): 973–81. DOI: 10.1161/01.cir.82.3.973
  34. Anidjar S., Osborne-Pellegrin M., Coutard M., Michel J.B. Arterial hypertension and aneurysmal dilatation. Kidney Int. Suppl. 1992; 37: 561–6.
  35. Tanaka A., Hasegawa T., Chen Z., Okita Y., Okada K. A novel rat model of abdominal aortic aneurysm using a combination of intraluminal elastase infusion and extraluminal calcium chloride exposure. J. Vasc. Surg. 2009; 50: 1423–32. DOI: 10.1016/j.jvs.2009.08.062
  36. Czerski A., Ratajczak K., Nowak M., Janeczek M., Zawadzki W., Witkiewicz W., Rusiecka A. Experimental methods of abdominal aortic aneurysm creation in swine as a large animal model. J. Physiol. Pharmacol. 2013; 64 (2): 185–92.
  37. Thompson M.M., Wills A., McDermott E., Crowther M., Brindle N., Bell P.R. An in vitro model of aneurysmal disease: effect of leukocyte infiltration and shear stress on MMP production within the arterial wall. Ann. NY Acad. Sci. 1996; 800: 270–3. DOI: 10.1111/j.1749-6632.1996.tb33329.x
  38. Wills A., Thompson M.M., Crowther M., Brindle N.P., Nasim A., Sayers R.D., Bell P.R.F. Elastase-induced matrix degradation in arterial organ cultures: an in vitro model of aneurysmal disease. J. Vasc. Surg. 1996; 24: 667–79. DOI: 10.1016/s0741-5214(96)70083-6
  39. Rush C., Nyara M., Moxon J.V., Trollope A., Cullen B., Golledge J. Whole genome expression analysis with in the angiotens in II–apolipoprotein E deficient mouse model of abdominal aortic aneurysm. BMC Genomics. 2009; 10 (1): 298. DOI: 10.1186/1471-2164-10-298
  40. Cassis L.A., Gupte M., Thayer S., Zhang X., Charnigo R., Howatt D.A. et al. Angiotensin II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am. J. Physiol. Heart Circ. Physiol. 2009; 296: H1660–5. DOI: 10.1152/ajpheart.00028.2009
  41. Simpson C.F., Kling J.M., Palma R.F. ß-aminopropriomitrile- induced dissecting aneurysms of turkeys: treatment with propanalol. Toxicol. Appl. Pharmacol. 1970; 16 (1): 143–53. DOI: 10.1016/0041-008x(70)90170-5
  42. Simpson C.F., Boucek R.J. The ß-aminopropionitrilefed turkey: a model for detecting potential drug action on arterial tissue. Cardiovasc. Res. 1983; 17 (1): 26–32. DOI: 10.1093/cvr/17.1.26
  43. Simpson C.F., Kling J.M., Palmer R.F. The use of propranolol for the protection of turkeys from the development of ß-aminopropionitrile-induced aortic ruptures. Angiology. 1968; 19 (7): 414–8. DOI: 10.1177/00033 1976801900705
  44. Moore-Jones D., Perry H.M. Radioautographic localization of hydralazine-1-C14 in arterial walls. Exp. Biol. Med. 1966; 122 (2): 576–9. DOI: 10.3181/00379727-122-31195
  45. Simpson C.F., Taylor W.I. Effect of hydralazine on aortic rupture induced by g-aminoproprionitrile in turkeys. Circulation. 1982; 65 (4): 704–8. DOI: 10.1161/01.cir.65.4.704
  46. Boucek R.J., Gunia-Smith Z., Nobel N.L, Simpson C.F. Modulation by propranolol of the lysyl crosslinks in aortic elastin and collagen of the aneurysmprone turkey. Biochem. Pharmacol. 1983; 32 (2): 275–80. DOI: 10.1016/0006-2952(83)90555-5
  47. Gilbert E.F., Bruyere H.J., Ishikawa S., Cheung M.O., Hodach R.J. The effects of methylxanthines on catecholamine- stimulated and normal chick embryos. Teratology. 1977; 16 (1): 47–52. DOI: 10.1002/tera.1420160108
  48. Ishikawa S., Gilbert E.F., Bruyere H.J., Cheung M.O. Aortic aneurysm associated with cardiac defects in theophylline stimulated chick embryos. Tetrology. 1978; 18 (1): 23–30. DOI: 10.1002/tera.1420180106
  49. Kolb C.A., Mansfield J.M. Effects of theophylline treatment on mouse B-16 melanoma cells in vitro. Oncology. 1980; 37 (5): 343–52. DOI: 10.1159/000225467
  50. Gavish L., Rubinstein C., Berlatzky Y., Gavish L.Y, Beeri R., Gilon D. et al. Low level laser arrests abdominal aortic aneurysm by collagen matrix reinforcement in apolipoprotein E-deficient mice. Lasers Surg. Med. 2012; 44 (8): 664–74. DOI: 10.1002/lsm.22068
  51. Gertz S.D., Mintz Y., Beeri R., Rubinstein C., Gilon D., Gavish L. et al. Lessons from animal models of arterial aneurysm. Aorta. 2013; 1 (5): 244–54. DOI: 10.12945/j.aorta.2013.13-052
  52. Allaire E., Guettier C., Bruneval P., Plissonnier D., Michel J.B. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xenografts in rats. J. Vasc. Surg. 1994; 19 (3): 446–56. DOI: 10.1016/s0741-5214(94)70071-0
  53. Chiou A.C., Chiu B., Pearce W.H. Murine aortic aneurysm produced by periarterial application of calcium chloride. J. Surg. Res. 2001; 99 (2): 371–6. DOI: 10.1006/jsre.2001.6207

About Authors

  • Teona R. Tibua, Postgraduate; orcid.org/0000-0002-9552-4856
  • Aleksandr Yu. Gorodkov, Dr. Biol. Sc., Head of Laboratory of Modeling and Study of the Pathology of Heart and Vessels with Operation Block and Vivarium; orcid.org/0000-0001-5597-4820
  • Valeriy S. Arakelyan, Dr. Med. Sc., Professor, Head of Arterial Pathology Surgery Department; orcid.org/0000-0002-0284-6793

 If you found mistakes, select text and press Alt+A