Abstract
Nexuses (gap junctions) ensure electrical coupling of cardiomyocytes and participate in heart rhythm maintenance. The review
presents modern data on the structure and protein composition of the nexuses, their localization in cardiomyocytes, and their
remodeling under conditions of myocardial pathology. The nexuses of ventricular cardiomyocytes undergo stereotypical changes in
pathology, consisting in their partial redistribution from intercalated discs to lateral cell borders, that can be related to a decrease in
connexin 43 content. At the same time, changes in atrial cardiomyocytes in myocardial pathology are diverse and can be accompanied
by decrease or increase in the content of connexin 43 and, especially connexin 40. Published data suggest that protein composition,
localization, and number of nexuses in cardiomyocytes depend on the tissue-specific patterns of these cells and change
in conditions of myocardial pathology usually associated with heart rhythm disturbances.
References
1. Dupont E., Matsushita T., Kaba R.A., Vozzi C., Coppen S.R., Khan N. et al. Altered connexin expression in human congestive heart failure. J. Mol. Cell. Cardiol. 2001;
33 (2): 359–71.
2. Kitamura H., Ohnisni Y., Yoshida A., Okajima K., Azumi H., Ishida A. et al. Heterogeneous loss of connexin 43 protein in nonischemic dilated cardiomyopathy with
ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2002; 13 (9): 865–70.
3. Dupont E., Ko Y.S., Rothery S., Coppen S.R., Baghai M., Haw M. et al. The gap-junctional protein connexin 40 is elevated in patients susceptible to postoperative atrial
fibrillation. Circulation. 2001; 103: 842–9.
4. Kostin S., Klein G., Szalay Z., Hein S., Bauer E.P., Schaper J. Structural correlate of atrial fibrillation in human patients. Cardiovasc. Res. 2002; 54 (2): 361–79.
5. Nao T., Ohkusa T., Hisamatsu Y., Inoue N., Matsumoto T., Yamada J. et al. Comparison of expression of connexin in right atrial myocardium in patients with chronic
atrial fibrillation versus those in sinus rhythm. Am. J. Cardiol. 2003; 91: 678–83.
6. Li D., Feng Y., Zhang H. The relationship between gap junctional remodeling and human atrial fibrillation. Chinese Medical Journal. 2004; 117 (8): 1256–8.
7. Yan H., Chen J.Z., Zhu J.H., Ni Y.M., Yu G.W., Hu S.J. et al. Expression of connexin in atrium of patients with atrial fibrillation and its signal transduction pathway.
Zhonghua Yi Xue Za Zhi. 2004; 84 (3): 209–13.
8. Wetzel U., Boldt A., Lauschke J., Weigl J., Schirdewahn P., Dorszewski A. et al. Expression of connexins 40 and 43 in human left atrium in atrial fibrillation of different
aetiologies. Heart. 2005; 91: 166–70.
9. Takeuchi S., Toshiaki A., Takagishi Y., Watanabe Е., Sasano С., Honjo Н. et al. Disorganization of gap junction distribution in dilated atria of patients with chronic atrial
fibrillation. Circulation Journal. 2006; 70: 575–82.
10. Wilhelm M., Kirste W., Kuly S., Amann К., Neuhuber W., Weyand M. et al. Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent, and postoperative
atrial fibrillation. Heart Lung Circ. 2006; 15 (1): 30–7.
11. Luo M.H., Li Y.S., Yang K.P. Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology. 2007; 107 (4):
248–53.
12. Guerrero P.A., Schuessler R.B., Davis L.M., Beyer E.C., Johnson C.M., Yamada K.A. et al. Slow ventricular conduction in mice heterozygous for a connexin 43 null
mutation. J. Clin. Invest. 1997; 99: 1991–8.
13. Peters N.S., Coromilas J., Severs N.J., Wit A.L. Disturbed connexin 43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border
zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997; 95: 988–96.
14. Thomas S.A., Schuessler R.B., Berul C.I., Beardslee M.A., Beyer E.C., Mendelsohn M.E. et al. Disparate effects of deficient expression of connexin 43 on atrial and
ventricular conduction: evidence for chamber-specific molecular determinants of conduction. Circulation. 1998; 97: 686–91.
15. Kirchhoff S., Kim J.-S., Hagendorff A., Thönnissen E., Krüger O., Lamers W.H. et al. Abnormal cardiac conduction and morphogenesis in connexin 40 and connexin
43 double-deficient mice. Circ. Res. 2000; 87: 399–405.
16. Van der Velden H.M.W., Ausma J., Rook M.B., Hellemons A.J.C.G.M., van Veen T.A.A.B., Allessie M.A. et al. Gap junctional remodeling in relation to stabilization
of atrial fibrillation in the goat. Cardiovasc. Res. 2000; 46: 476–86.
17. Gutstein D.E., Morley G.E., Vaidya D., Liu F., Chen F.L., Stuhlmann H. et al. Heterogeneous expression of gap junction channels in the heart leads to conduction
defects and ventricular dysfunction. Circulation. 2001; 104: 1194–9.
18. Polontchouk L., Haefliger J.-A., Ebelt B., Schaefer T., Stuhlmann D., Mehlhorn U. et al. Effects of chronic atrial fibrillation on gap junction distribution in human and
rat atria. J. Am. Coll. Cardiol. 2001; 38: 883–91.
19. Ausma J., van der Velden H.M., Lenders M.H., van Ankeren E.P., Jongsma H.J., Ramaekers F.C. et al. Reverse structural and gap-junctional remodeling after prolonged
atrial fibrillation in the goat. Circulation. 2003; 107: 2051–8.
20. Teunissen B.E.J., Jongsma H.J., Bierhuizen M.F.A. Regulation of myocardial connexins during hypertrophic remodelling. Eur. Heart J. 2004; 25: 1979–89.
21. Severs N.S., Bruce A.F., Dupont E., Rothery S. Remodeling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 2008; 80 (1): 9–19.
22. Fontes M.S.C., van Veen T.A.B., de Bakker J.M.T., van Rijen H.V.M. Functional consequences of abnormal Cx43 expression in the heart. Biochim. Biophys. Acta. 2012;
1818: 2020–9.
23. Проничева И.В., Ревишвили А.Ш. Роль коннексинов и натриевого канала Na1.5, кодируемого геном SCN5A, в нарушениях проведения электрического
импульса в миокарде. Вестник аритмологии. 2012; 67: 59–62.
24. Verheule S., van Kempen M.J.A., te Welscher P.H.J.A., Kwak B.R., Jongsma H. J. Characterization of gap junction channels in adult rabbit atrial and ventricular
myocardium. Circ. Res. 1997; 80: 673–81.
25. Peters N.S., Green C.R., Poole-Wilson P.A., Severs N.J. Reduced content of connexin 43 gap junctions in ventricular myocardium from hypertrophied and ischemic
human hearts. Circulation. 1993; 88: 864–75.
26. Chen S.C., Davis L.M., Westphale E.M., Beyer E.C., Saf-fitz J.E. Expression of multiple gap junction proteins in human fetal and infant hearts. Pediatr. Res. 1994; 36
(5): 561–6.
27. Davis L.M., Rodefeld M.E., Green K., Beyer E.C., Saffitz J.E. Gap junction protein phenotypes of the human heart and conduction system. J. Cardiovasc.
Electrophysiol. 1995; 6: 813–22.
28. Vozzi C., Dupont E., Coppen S.R., Yeh H.I., Severs N.J. Chamber-related differences in connexin expression in the human heart. J. Mol. Cell. Cardiol. 1999; 31 (5):
991–1003.
29. Peters N.S., Severs N.J. Rothery S.M., Lincoln C., Yacoub M.H., Green C.R. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal
development of human ventricular myocardium. Circulation. 1994; 90: 713–25.
30. Kolcz J., Drukala J., Browska M., Rajwa B., Korohoda W., Malec E. The expression of connexin 43 in children with tetralogy of Fallot. Cell. Mol. Biol. Lett. 2005; 10
(2): 287–303.
31. Saffitz J.E., Green K.G., Kraft W.J., Schechtman K.B., Yamada K.A. Effects of diminished expression of connexin 43 on gap junction number and size in ventricular
myocardium. Am. J. Physiol. Heart Circ. Physiol. 2000; 278: H1662–H1670.
32. Bikou O., Thomas D., Trappe K., Lugenbiel P., Kelemen K., Koch M. et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model.
Cardiovasc. Res. 2011; 92: 218–25.
33. Igarashi T., Finet J.E., Takeuchi A., Fujino Y., Strom M., Greener I.D. et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation.
Circulation. 2012; 125 (2): 216–25.
34. Paznekas W.A., Boyadjiev S.A., Shapiro R.E., Daniels O., Wollnik B., Keegan C.E. et al. Connexin 43 [GJA1] mutations cause the pleiotropic phenotype of oculodentodigital
dysplasia. Am. J. Hum. Genet. 2003; 72 (2): 408–18.
35. Kalcheva N., Qu J., Sandeep N., Garcia L., Zhang J., Wang Z. et al. Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital
dysplasia. PNAS. 2007; 104 (51): 20512–6.
36. Paznekas W.A., Karczeski B., Vermeer S., Lowry R.B., Delatycki M., Laurence F. et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital
dysplasia phenotype. Hum. Mutat. 2009; 30 (5): 724–33.
37. Emdad L., Uzzaman M., Takagishi Y., Honjo H., Uchida T., Severs N.J. et al. Gap junction remodeling in hypertrophied left ventricles of aortic-banded rats: prevention by
angiotensin II type 1 receptor blockade. J. Mol. Cel. Cardiol. 2001; 33 (2): 219–31.
38. Benes J., Melenovsky V., Skaroupkova P., Pospisilova J., Petrak J., Cervenka L. et al. Myocardial morphological characteristics and proarrhythmic substrate in the rat
model of heart failure due to chronic volume overload. Anat. Rec. 2011; 294: 102–11.
39. Poelzing S., Rosenbaum D.S. Altered connexin 43 expression produces arrhythmia substrate in heart failure. Am. J. Physiol. Heart Circ. Physiol. 2004; 287:
H1762–H1770.
40. Smith J.H., Green C.R., Peters N.S., Rothery S., Severs N.J. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of
human myocardium using laser scanning confocal microscopy. Am. J. Pathol. 1991; 139 (4): 801–21.
41. Sepp R., Severs N.J., Gourdie R.G. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart. 1996; 76 (5): 412–7.
42. Kostin S., Rieger M., Dammer S., Hein S., Richter M., Klövekorn W.P. et al. Gap junction remodeling and altered connexin 43 expression in the failing human heart.
Mol. Cell. Biochem. 2003; 242 (1–2): 135–44.
43. Kostin S., Dammer S., Hein S., Klovekorn W.P., Bauer E.P., Schaper J. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy
in patients with aortic stenosis. Cardiovasc. Res. 2004; 62 (2): 426–36.
44. Peters N.S., Wit A.L. Myocardial architecture and ventricular arrhythmogenesis. Circulation. 1998; 97 (17): 1746–54.
45. Kaprielian R.R., Gunning M., Dupont E., Sheppard M.N., Rothery S.M., Underwood R. et al. Downregulation of immunodetectable connexin 43 and decreased gap
junctions size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation. 1998; 97: 651–60.
46. Mahtab E.A., Gittenberger-de Groot A.C., Vicente-Steijn R., Lie-Venema H., Rijlaarsdam M.E., Hazekamp M.G. et al. Disturbed myocardial connexin 43 and N-cadherin
expressions in hypoplastic left heart syndrome and borderline left ventricle. J. Thorac. Cardiovasc. Surg. 2012; 144 (6): 1315–22.
47. Noorman M., Hakim S., Kessler E., Groeneweg J.A., Cox M.G., Asimaki A. et al. Remodeling of the cardiac sodium channel, connexin 43, and plakoglobin at the
intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm. 2013; 10 (3): 412–9.
48. Van Norstrand D.W., Asimaki A., Robinos C., Dolmatova E., Srinivas M., Tester D.J. et al. Conexin 43 mutation causes heterogeneous gap junction loss and sudden
infant death. Circulation. 2012; 125: 474–81.
49. Vetter C., Zweifel M., Zuppinger C., Carrel T., Martin D., Haefliger J.-A. et al. Connexin 43 expression in human hypertrophied heart due to pressure and volume overload.
Physiol. Res. 2010; 59: 35–42.
50. Yamada K.A., Rogers J.G., Sundset R., Steinberg T.H., Saffitz J.E. Up-regulation of connexin 45 in heart failure.J. Cardiovasc. Electrophysiol. 2003; 14: 1205–12.