Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Reversibility of ischemic mitral regurgitation: conditions and mechanisms of reverse remodeling, diagnostic principles

Authors: Koksheneva I.V., Maloroeva A.I.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2020-17-2-85-98

UDC: 616.126.42-005.4-008.17-089

Link: Clinical Physiology of Blood Circulaiton. 2020; 17 (2): 85-98

Quote as: Koksheneva I.V., Maloroeva A.I. Reversibility of ischemic mitral regurgitation: conditions and mechanisms of reverse remodeling, diagnostic principles. Clinical Physiology of Circulation. 2020; 17 (2): 85–98 (in Russ.). DOI: 10.24022/1814-6910-2020-17-2-85-98

Received / Accepted:  14.01.2020/23.01.2020

Download
Full text:  

Abstract

Ischemic mitral regurgitation (MR) is a common complication of ischemic heart disease. In the cardiac surgical community debates continue regarding optimal tactics in patients with ischemic MR. This article presents a review of the literature on the mechanisms of reversibility of ischemic MR after myocardial revascularization. In this review, the emphasis is shifted from assessing only the mitral valve to assessing the structural and functional state of the left ventricular myocardium (LV) and its viability as the main determinant of leveling ischemic MR after myocardial revascularization. The “valvulocentric approach” overlooks the main reason for the formation and further dynamics of ischemic MR. While understanding the mechanism of formation of ischemic MR is the key to its effective treatment. Patients with ischemic MR represent a very heterogeneous group, which varies in degree of viability and contractile myocardial reserves, in severity of structural remodeling of the left ventricle and mitral valve apparatus. Whether it is necessary to perform an intervention on the mitral valve or to confine myself to performing myocardial revascularization, can to a large extent help, along with assessing the geometry of the left ventricle and mitral valve apparatus, the study of myocardial viability.

References

  1. Levine R.A., Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation. 2005; 112 (5): 745–58. DOI: 10.1161/CIRCULATIONAHA. 104.486720
  2. Бузиашвили Ю.И., Кокшенева И.В., Асымбекова Э.У., Тугеева Э.Ф., Голубев Е.П., Мацкеплишвили С.Т. Ишемическая митральная регургитация: механизмы развития и прогрессирования, актуальные вопросы лечебной тактики. М.: НЦССХ им. А.Н. Бакулева; 2015. [Buziashvili Yu.I., Koksheneva I.V., Asymbekova E.U., Tugeeva E.F., Golubev E.P., Matskeplishvili S.T. Ischemic mitral regigitation: mechanisms of development and progressing, topical issues of treatment. Moscow; 2015 (in Russ.)].
  3. Beaudoin J., Dal-Bianco J.P., Aikawa E. et al. Mitral leaflet changes following myocardial infarction: clinical evidence for maladaptive valvular remodeling. Circ. Cardiovasc. Imaging. 2017; 10 (11): 006512. DOI: 10.1161/CIRCIMAGING.117.006512
  4. Zamorano J.L., Gonzalez-Gomez A., Lancellotti P. et al. Mitral valve anatomy: implications for transcatheter mitral valve interventions. EuroIntervention. 2014; 10: 106–11. DOI: 10.4244/EIJV10SUA15
  5. Бузиашвили Ю.И., Кокшенева И.В., Хуцураули Е.М., Голубев Е.П., Арутюнова Я.Э., Махмудо Ш.Г. Прогностические факторы прогрессирования митральной регургитации у больных ишемической болезнью сердца после операции изолированного аортокоронарного шунтирования и в сочетании с хирургической реконструкцией левого желудочка. Кардиология и сердечно-сосудистая хирургия. 2012; 5 (5): 12–8. [Buziashvili Yu.I., Koksheneva I.V., Khutsurauli E.M., Golubev E.P., Arutyunova Ya.E., Makhmudo Sh.G. Prognostic factors of mitral regurgitation progression in CHD patients after isolated coronary bypass grafting and in combination with surgical reconstruction of left ventricle. Russian Journal of Cardiology and Cardiovascular Surgery. 2012; 5 (5): 12–8 (in Russ.)].
  6. McCarthy K.P., Ring L., Rana B.S. Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr.2010; 11 (10): 3–9. DOI: 10.1093/ejechocard/jeq153
  7. Burch G.E., De Pasquale N.P., Phillips J.H. Clinical manifestations of papillary muscle dysfunction. Arch. Intern. Med. 1963; 112: 112–7.
  8. Burch G.E., De Pasquale N.P., Phillips J.H. The syndrome of papillary muscle dysfunction. Am. Heart J. 1968; 75: 399–415.
  9. Ogawa S., Hubbard F.E., Mardelli T.J., Dreifus L.S. Cross-sectional echocardiographic spectrum of papillary muscle dysfunction. Am. Heart J.1979; 97: 312–21.
  10. Godley R.W., Wann L.S., Weuman A.E. et al. Incomplete mitral leaflet closure in patients with papillary muscle dysfunction. Circulation. 1981; 63: 565–71.
  11. Бузиашвили Ю.И., Кокшенева И.В., Абуков С.Т., Абдуллаев А.А. Значение функции папиллярных мышц митрального клапана и прилежащих сегментов миокарда ЛЖ в прогрессировании ишемической митральной регургитации у больных ИБС после хирургического лечения. Терапевтический архив. 2015; 8: 9–28. DOI: 10.17116/ terarkh20158789-15 [Buziashvili Yu.I., Koksheneva I.V., Abukov S.T., Abdullaev A.A. The significance of the function of the papillary muscles of the mitral valve and the adjacent segments of the myocardium of the LV in the progression of ischemic mitral regurgitation in patients with СHD after surgical treatment. Therapeutic Archive. 2015; 8: 9–28. DOI: 10.17116/terarkh20158789-15 (in Russ.)].
  12. Ahmad R.M., Gillinov A.M., McCarthy P.M., Blackstone E.H., Apperson-Hansen C., Qin J.X. et al. Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three – dimensional echocardiography and computer reconstruction. Ann. Thorac. Surg. 2004; 78: 2063–8. DOI: 10.1016/j.athoracsur.2004.06.016
  13. Otsuji Y., Levine R.A., Takeuchi M., Sakata R., Tei C. Mechanism of ischemic mitral regurgitation. J. Cardiol. 2008; 51 (3): 145–56. DOI: 10.1016/j.jjcc.2008.03.005
  14. Gorman J.H., Jackson B.M., Enomoto Y., Gorman R.C. The effect of regional ischemia on mitral valve annular saddle shape. Ann. Thorac. Surg. 2004; 77 (2): 544–8. DOI: 10.1016/S0003-4975(03)01354-7
  15. Jensen M.O., Jensen H., Skov S.N., Levine R.A., Nygaard H. M., Hasenkam J., Nielsen S.L. New mitral valve annuloplasty concept: optimizing annular dynamics and force distribution. J. Heart. Valve. Dis. 2018; 27 (1): 38–46.
  16. Cokkinos D.V., Belogianneas C. left ventricular remodelling: a problem in search of solutions. Eur. Cardiol. 2016; 11 (1): 29–35. DOI: 10.15420/ecr.2015:9:3
  17. Pfeffer J.M., Pfeffer M.A., Fletcher P.J., Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 1991; 260: H1406–14. DOI: 10.1152/ajpheart.1991.260.5.H1406
  18. Saraon T., Katz S.D. Reverse remodeling in systolic heart failure. Cardiol. Rev. 2015; 23: 173–81. DOI: 10.1097/CRD.0000000000000068
  19. Kim G.H., Uriel N., Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat. Rev. Cardiol. 2018; 15 (2): 83–96. DOI: 10.1038/nrcardio. 2017.139
  20. Hellawell J.L., Margulies K.B. Myocardial reverse remodeling. Cardiovasc. Ther. 2012; 30 (3): 172–81. DOI: 10.1111/j.1755-5922.2010.00247.x
  21. Rahimtoola S.H., La Canna G., Ferrari R. Hibernating myocardium: Another piece of the puzzle falls into place. J. Am. Coll. Cardiol. 2006; 47: 978–80. DOI: 10.1016/j.jacc.2005.11.038
  22. Rahimtoola S.H., Dilsizian V., Kramer Ch.M., Marwick T.H., Vanoverschelde Jean-Louis J. Chronic ischemic left ventricular dysfunction: from pathophysiology to imaging and its integration into clinical practice. JACC Cardiovasc. Imaging. 2008; 1 (4): 536–55. DOI: 10.1016/j.jcmg.2008.05.009
  23. Allman K.C., Shaw L.J., Hachamovitch R., Udelson J.E. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction. J. Am. Coll. Cardiol. 2002; 39: 1151–8. DOI: 10.1016/s07351097 (02)01726-6
  24. Carluccio E., Biagioli P., Alunn G. et al. Patients with hibernating myocardium show altered left ventricular volumes and shape, which revert after revascularization: evidence that dyssynergy might directly induce cardiac remodeling. J. Am. Coll. Cardiol. 2006; 47: 969–77. DOI: 10.1016/j.jacc.2005.09.064
  25. Cwajg J.M., Cwajg E., Nagueh S.F. et al. End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography. J. Am. Coll. Cardiol. 2000; 35: 1152–61. DOI: 10.1016/s0735-1097(00)00525-8
  26. La Canna G., Rahimtoola S.H., Visioli O. et al. Sensitivity, specificity and predictive accuracies of noninvasive tests, singly and in combination, for diagnosis of hibernating myocardium. Eur. Heart. J. 2000; 21: 1358–67. DOI: 10.1053/euhj.1999.2038
  27. Chan J., Hanekom L., Wong C., Leano R., Cho G.Y., Marwick T.H. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and longaxis myocardial function. J. Am. Coll. Cardiol. 2006; 48: 2026–33. DOI: 10.1016/j.jacc.2006.07.050
  28. Morgan A.E., Zhang Y., Tartibi M. et al. Ischemic mitral regurgitation: abnormal strain overestimates nonviable myocardium. Ann. Thorac. Surg. 2018; 105: 1754–61. DOI: 10.1016/j.athoracsur.2018.01.005
  29. Penicka M., Tousek P., De Bruyne B. et al. Myocardial positive pre-ejection velocity accurately detects presence of viable myocardium, predicts recovery of left ventricular function and bears a prognostic value after surgical revascularization. Eur. Heart. J. 2007; 28: 1366–73. DOI: 10.1093/eurheartj/ehl456
  30. Pasquet A., Lauer M.S., Williams M.J., Secknus M.-A., Lytle B., Marwick T.H. Prediction of global left ventricular function after bypass surgery in patients with severe left ventricular dysfunction. Impact of pre-operative myocardial function, perfusion, and metabolism. Eur. Heart. J. 2000; 21: 125–36. DOI: 10.1053/ euhj.1999.1663
  31. Hoffmann R., Altiok E., Nowak B. et al. Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. J. Am. Coll. Cardiol. 2002; 39: 443–9. DOI: 10.1016/s0735-1097 (01)01763-6
  32. Hanekom L., Jenkins C., Jeffries L. et al. Incremental value of strain rate analysis as an adjunct to wallmotion scoring for assessment of myocardial viability by dobutamine echocardiography: a followup study after revascularization. Circulation. 2005; 112: 3892–900. DOI: 10.1161/CIRCULATIONAHA.104.489310
  33. Campwala S.Z., Bansal R.C., Wang N., Rzzouk A., Pai R.G. Mitral regurgitation progression following isolated coronary artery bypass surgery: frequency, risk factors, and potential prevention strategies. Eur. J. Cardiothoracic. Surg. 2006; 29: 348–54. DOI: 10.1016/j.ejcts. 2005.12.007
  34. Ryden T., Bech-Hanssen O., Brandrup-Wognsen G., Nilsson F., Svensson S., Jeppsson A. The importance of grade 2 ishemic mitral regurgitation in coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 2001; 20: 276–81. DOI: 10.1016/S1010-7940(01)00770-9
  35. Aklog L., Filsoufi F., Flores K.Q., Chen L.H., Nathan N.S., Byrne J.G., Adams D.H. Does coronary artery bypass grafting alone correct moderate ischemic mitral regurgitation? Circulation. 2001; 104: 68–75. DOI: 10.1161/hc37t1.094706
  36. Yoshida S., Fukushima S., Miyagawa S., Nakamura T., Yoshikawa Y., Hata H. et al. Mitral valve structure in addition to myocardial viability determines the outcome of functional mitral regurgitation after coronary artery bypass grafting. Circ. J. 2017; 81 (11): 1620–7. DOI: 10.1253/circj.CJ-16-1280
  37. Mallidi H.R., Pelletier M.P., Lamb J., Desai N., Sever J., Christakis G.T. et al. Late outcomes in patients with uncorrected mild to moderate mitral regurgitation at the time of isolated coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2004; 127: 636–44. DOI: 10.1016/j.jtcvs.2003.09.010
  38. Бузиашвили Ю.И., Кокшенева И.В., Асымбекова Э.У., Турахонов Т.К., Голубев Е.П. Прогнозирование обратимого и необратимого характера ишемической митральной регургитации у больных ишемической болезнью сердца после реваскуляризации миокарда. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2019; 20 (2): 141–51. DOI: 10.24022/1810-0694-2019-20-2141-151 [Buziashvili Yu.I., Koksheneva I.V., Asymbekova E.U., Turakhonov T.K., Golubev E.P. Prediction of the reversible and irreversible nature of ischemic mitral regurgitation in patients with coronary heart disease after myocardial revascularization. The Bulletin of Bakoulev Center for Cardiovascular Diseases.2019; 20 (2): 141–51. DOI: 10.24022/1810-0694-2019-20-2-141-151 (in Russ.)].
  39. Penicka M., Linkova H., Lang O. et al. Predictors of improvement of unrepaired moderate ischemic mitral regurgitation in patients undergoing elective isolated coronary artery bypass graft surgery. Circulation. 2009; 120: 1474–81. DOI: 10.1161/CIRCULATIONAHA. 108.842104
  40. Flynn M., Curtin R., Nowicki E.R., Rajeswaran J., Flamm S.D., Blackstone E.H., Mihaljevic T. Regional wall motion abnormalities and scarring in severe functional ischemic mitral regurgitation: a pilot cardiovascular magnetic resonance imaging study. J. Thorac. Cardiovasc. Surg. 2009; 137 (5): 1063–70. DOI: 10.1016/j.jtcvs.2008.12.023
  41. Lancaster T.S., Kar J., Cupps B.P. et al. Topographic mapping of left ventricular regional contractile injury in ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 2017; 154: 149–58. DOI: 10.1016/j.jtcvs. 2016.11.055
  42. Michler R.E., Smith P.K., Parides M.K. et al. Two-year outcomes of surgical treatment of moderate ischemic mitral regurgitation. N. Engl. J. Med. 2016; 374: 1932–41. DOI: 10.1056/NEJMoa1602003 .
  43. Chaput M., Handschumacher M.D., Guerrero J.L., Holmvang G., Dal-Bianco J.P., Sullivan S. et al. Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation. 2009; 120 (11 Suppl.): S99–103. DOI: 10.1161/CIRCULATIONAHA.109.844019
  44. Zhang L., Qiu J., Yu L., Chen S., Sun K., Yao L. Quantitative assessment of mitral apparatus geometry using dual-source computed tomography in mitral regurgitation. Int. Heart. J. 2015; 56 (4): 408–14. DOI: 10.1536/ihj.14-337
  45. Soleimani M., Khazalpour M., Cheng G., Zhang Zh., Acevedo-Bolton G. et al. Moderate mitral regurgitation accelerates left ventricular remodeling after postero-lateral myocardial infarction. Ann. Thorac. Surg.2011; 92 (5): 1614–20. DOI: 10.1016/j.athoracsur.2011.05.117
  46. Sun X., Huang J., Shi M., Huang G., Pang L., Wang Y. Predictors of moderate ischemic mitral regurgitation improvement after off-pump coronary artery bypass. J. Thorac. Cardiovasc. Surg. 2015; 149 (6): 1606–12. DOI: 10.1016/j.jtcvs.2015.02.047
  47. Poh K.K., Lee G.K., Lee L.C. et al. Reperfusion therapies reduce ischemic mitral regurgitation following inferoposterior ST-segment elevation myocardial infarction. Coron. Artery. Dis. 2012; 23: 555–9. DOI: 10.1097/MCA.0b013e32835aab65
  48. Yiu S.F., Enriquez-Sarano M., Tribouilloy C., Seward J.B., Tajik A.J. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation. 2000; 102 (12): 1400–06. DOI: 10.1161/ 01.cir.102.12.1400
  49. Meris A., Amigoni M., Verma A., Thune J.J., Ko /ber L., Velazquez E. et al. Mechanisms and predictors of mitral regurgitation after high-risk myocardial infarction. J. Am. Soc. Echocardiogr. 2012; 25 (5): 535–42. DOI: 10.1016/j.echo.2012.01.006
  50. Lancellotti P., Marwick T.H., Pierard L. et al. Ischaemic mitral regurgitation: mechanisms and diagnosis. Heart. 2009; 9520: 1711–8. DOI: 10.1136/hrt.2007. 135335
  51. Heinle S.K., Tice F.D., Kisslo J. Effect of dobutamine stress echocardiography on mitral regurgitation. J. Am. Coll. Cardiol. 1995; 25 (1): 122–7. DOI: 10.1016/07351097(94)00358-W
  52. Lapu-Bula R., Robert A., Van Craeynest D., D’Hondt A.M., Gerber B.L., Pasquet A. et al. Contribution of exercise-induced mitral regurgitation to exercise stroke volume and exercise capacity in patients with left ventricular systolic dysfunction. Circulation. 2002; 106 (11): 1342–8. DOI: 10.1161/01.cir.0000028812. 98083.d9
  53. Rosario L.B., Stevenson L.W., Solomon S.D., Lee R.T., Reimold S.C. The mechanism of decrease in dynamic mitral regurgitation during heart failure treatment: importance of reduction in the regurgitant orifice size. J. Am. Coll. Cardiol. 1998; 32 (7): 1819–24. DOI: 10.1016/s0735-1097(98)00461-6
  54. Levine A.B., Muller C., Levine T.B. et al. Effects of high-dose lisinopril-isosorbide dinitrate on severe mitral regurgitation and heart failure remodeling. Am. J. Cardiol. 1998; 82: 1299–301. DOI: 10.1016/s00029149(98)00623-7
  55. Турахонов Т.К., Кокшенева И.В. Возможности тканевой миокардиальной доплерографии в оценке функции миокарда у больных с ишемической митральной регургитацией. Клиническая физиология кровообращения. 2018; 15 (3): 149–61. DOI: 10.24022/1814-6910-2018-15-3-149-161 [Turakhonov T.K., Koksheneva I.V. Possibilities of Doppler Tissue Imaging in the evaluationof myocardial function in patients with ischemic mitral regurgitation. Clinical Physiology of Circulation. 2018; 15 (3): 149–61. DOI: 10.24022/1814-6910-2018-15-3-149-161 (in Russ.)].

About Authors

  • Inna V. Koksheneva, Dr. Med. Sc., Senior Researcher; orcid.org/0000-0002-8797-9340
  • Amina I. Maloroeva, Postgraduate


 If you found mistakes, select text and press Alt+A