Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Central hemodynamics, oxygen consumption and oxygenating function of the lungs during restrictive and lebaraly perioperative infusion in patients with heart valves defects

Authors: Yudin G.V., Aydashev Yu.Yu., Rybka M.M., Khinchagov D.Ya., Meshchanov B.V., Goncharov A.A.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2021-18-1-60-72

UDC: 10.24022/1814-6910-2021-18-1-60-72

Link: Clinical Physiology of Blood Circulaiton. 2021; 1 (18): 60-72

Quote as: Yudin G.V., Aydashev Yu.Yu., Rybka M.M., Khinchagov D.Ya., Meshchanov B.V., Goncharov A.A. Central hemodynamics, oxygen consumption and oxygenating function of the lungs during restrictive and lebaraly perioperative infusion in patients with heart valves defects. Clinical Physiology of Circulation. 2021; 18 (1): 60–72 (in Russ.). DOI: 10.24022/1814-6910-2021-18-1-60-72

Received / Accepted:  11.01.2021 / 26.01.2021

Download
Full text:  

Abstract

Objective: To compare of the central hemodynamic, oxygen transport and consumption and oxygenating function of the lungs in the conditions of restrictive and liberal perioperative fluid therapy in patients operated on heart valves.

Material and methods. A prospective randomized study involving two groups of patients with heart valves deffects: the restrictive strategy group (RS) – 32 patients with limited infusion in pre-bypass period – 3 ml/kg/h, and the liberal strategy group (LS) – 31 patients with volume of infusion in pre-bypass period 20 ml/kg/h. We compared the condition of central hemodynamic, oxygen transport and its consumption, oxygenating function of the lungs in the pre- and post-bypass periods and after the operation, and the total hydrobalance for the operation.

Results. In the post-bypass period and after the operation, oxygen consumption (IVO2) and extraction were comparatively lower in the LS group, 72 ± 26 ml/min/m2 and 17 ± 7% vs. 93 ± 53 ml/min/m2 (p = 0.01) and 24 ± 10% (p = 0.001) in the RS group in the post-bypass period and 83 ± 38 ml/min/m2 and 17 ± 10% vs. 116 ± 60 ml/min/m2 (p = 0.02) and 24 ± 10% (p = 0.001) in the RS group after the operation with the same parameters of central hemodynamic and oxygen delivery. The PaO2/FiO2 index was reduced in the LS group in the post-bypass period of 308 ± 92 against 369 ± 87 in the RS group (p = 0.04) and after the operation 319 ± 78 against 379 ± 73 in the RS group (p = 0.02). The final hydrobalance for the operation was 25.9 (16.9; 33.3) ml/kg in the LS group and 10.9 (4.5; 16.9) ml/kg in the RS group (p < 0.0001).

Conclusion. In comparison with the liberal approach, limiting the volume of infusion provides increased tissue oxygen utilization and improved oxygenating function of the lungs with relatively identical parameters of central hemodynamic and a lower hydrobalance in patients operated on heart valves.

References

  1. Киров М.Ю., Паромов К.В., Ленькин А.И., Кузьков В.В. Анестезиолог и гемодинамика: что нам дают протоколы целенаправленной терапии. Тихоокеанский медицинский журнал. 2012; 3: 18–21.
  2. Волков П.А., Волкова Ю.Н., Севалкин С.А., Чурадзе Б.Т., Гурьянов В.А. Эволюция взглядов на интраоперационную инфузионную терапию. Вестник анестезиологии и реаниматологии. 2015; 12 (5): 48–57.
  3. Roumelioti M., Glew R.H., Khitan Z.J., RondonBerrios H., Argyropoulos C.P., Malhotra D. et al. Fluid balance concepts in medicine: principles and practice. World J. Nephrol. 2018; 7 (1): 1–28. DOI: 10.5527/wjn.v7.i1.1
  4. Hoorn E.J. Intravenous fluids: balancing solutions. J. Nephrol. 2017; 30 (4): 485–92. DOI: 10.1007/s40620-016-0363-9
  5. Voldby A.W., Brandstrup B. Fluid therapy in the perioperative setting – a clinical review. J. Intensive Care. 2016; 4: 27. DOI: 10.1186/s40560-016-0154-3
  6. Habicher M., Perrino A.Jr, Spies C.D., von Heymann C., Wittkowski U., Sander M.J. Contemporary fluid management in cardiac anesthesia. Cardiothorac. Vasc. Anesth. 2011; 25 (6): 1141–53. DOI: 10.1053/j.jvca.2010.07.020
  7. Мороз Г., Фоминский Е.В., Шилова А.Н., Караськов А.М., Корнилов И.А., Пустоветова М.Г., Ломиворотов В.В. Влияние целенаправленной терапии различными инфузионными средами на содержание внесосудистой воды легких у кардиохирургических больных. Общая реаниматология. 2015; 11 (3): 54–64.
  8. Ильина Я.Ю., Кузьков В.В., Фот Е.В., Сметкин А.А., Киров М.Ю. Прогнозирование ответа на инфузионную нагрузку: современные подходы и перспективы. Вестник анестезиологии и реаниматологии. 2017; 14 (3): 25–34. DOI: 10.21292/2078- 5658-2017-14-3-25-34
  9. Pang Q., Liu H., Chen B., Jiang Y. Restrictive and liberal fluid administration in major abdominal surgery. Saudi Med. J. 2017; 38 (2): 123–31. DOI: 10.15537/smj.2017.2.15077
  10. Berger M.M., Gradwohl-Matis I., Brunauer A., Ulmer H., Dunser M.W. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis. Minerva Anestesiol. 2015; 81 (7): 794–808.
  11. Silva J.M. Jr, de Oliveira A.M., Nogueira F.A., Vianna P.M., Pereira Filho M.C., Dias L.F. et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit. Care. 2013; 17 (6): R288. DOI: 10.1186/cc13151
  12. Vretzakis G., Kleitsaki A., Stamoulis K., Bareka M., Georgopoulou S., Karanikolas M. et al. Intra-operative intravenous fluid restriction reduces perioperative red blood cell transfusion in elective cardiac surgery, especially in transfusion-prone patients: a prospective, randomized controlled trial. J. Cardiothorac. Surg. 2010; 5: 7. DOI: 10.1186/1749-8090-5-7
  13. Kingeter A.J., Kingeter M.A., Shaw A.D. Fluids and organ dysfunction: a narrative review of the literature and discussion of 5 controversial topics. J. Cardiothorac. Vasc. Anesth. 2018; 32 (5): 2054–66. DOI: 10.1053/j.jvca.2018.03.017
  14. Romagnoli S., Rizza A., Ricci Z. Fluid status assessment and management during the perioperative phase in adult cardiac surgery patients. J. Cardiothorac. Vasc. Anesth. 2016; 30 (4): 1076–84. DOI: 10.1053/j.jvca.2015.11.008
  15. Bentzer P., Griesdale D.E., Boyd J., MacLean K., Sirounis D., Ayas N.T. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016; 316 (12): 1298–309. DOI: 10.1001/jama.2016.12310
  16. Gelman S., Bigatello L. The physiologic basis for goaldirected hemodynamic and fluid therapy: the pivotal role of the venous circulation. Can. J. Anaesth. 2018; 65 (3): 294–308. DOI: 10.1007/s12630-017-1045-3
  17. Anker A.M., Prantl L., Strauss C., Brebant V., Heine N., Lamby P. et al. Vasopressor support vs. liberal fluid administration in deep inferior epigastric perforator (DIEP) free flap breast reconstruction – a randomized controlled trial. Clin. Hemorheol. Microcirc. 2018; 69 (1–2): 37–44. DOI: 10.3233/CH-189129
  18. Nakamoto S., Tatara T., Okamoto T., Hirose M. Complex effects of continuous vasopressor infusion on fluid responsiveness during liver resection: a randomised controlled trial. Eur. J. Anaesthesiol. 2019; 36 (9): 667–75. DOI: 10.1097/EJA.0000000000001046
  19. Wuethrich P.Y., Studer U.E., Thalmann G.N., Burkhard F.C. Intraoperative continuous norepinephrine infusion combined with restrictive deferred hydration significantly reduces the need for dlood transfusion in patients undergoing open radical cystectomy: results of a prospective randomised trial. Eur. Urol. 2014; 66 (2): 352–60. DOI: 10.1016/j.eururo.2013.08.046
  20. Li Y., Fu B., Qian X. Liberal versus restricted fluid administration in heart failure patients. A systematic review and meta-analysis of randomized trials. Int. Heart J. 2015; 56 (2): 192–5. DOI: 10.1536/ihj.14-288
  21. Kalmar A.F., Allaert S., Pletinckx P., Maes J.-W., Heerman J., Vos J.J. et al. Phenylephrine increases cardiac output by raising cardiac preload in patients with anesthesia induced hypotension. J. Clin. Monit. Comput. 2018; 32 (6): 969–76. DOI: 10.1007/s10877-018-0126-3
  22. Strunden M.S., Heckel K., Goetz A.E., Reuter D.A. Perioperative fluid and volume management: physiological basis, tools and strategies. Ann. Intensive Care. 2011; 1: 2. DOI: 10.1186/2110-5820-1-2
  23. Berg S., Engman A., Hesselvik J.F., Laurent T.C. Crystalloid infusion increases plasma hyaluronan. Crit. Care Med. 1994; 22 (10): 1563–7.
  24. Nieuwdorp M., van Haeften T.W., Gouverneur M.C.L.G., Mooij H.L., van Lieshout M.H.P., Levi M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006; 55 (2): 480–6. DOI: 10.2337/diabetes.55.02.06.db05-1103
****
  1. Kirov M.Yu., Paromov K.V., Len’kin A.I., Kuz’kov V.V. Anesthesiologist and hemodynamics: what do we need for targeted therapy? Pacific Medical Journal. 2012; 3: 18–21 (in Russ.).
  2. Volkov P.A., Volkova Yu.N., Sevalkin S.A., Churadze B.T., Gur’yanov V.A. Evolution of views on intraoperative infusion therapy. Messenger of Anesthesiology and Resuscitation. 2015; 12 (5): 48–57 (in Russ.).
  3. Roumelioti M., Glew R.H., Khitan Z.J., RondonBerrios H., Argyropoulos C.P., Malhotra D. et al. Fluid balance concepts in medicine: principles and practice. World J. Nephrol. 2018; 7 (1): 1–28. DOI: 10.5527/wjn.v7.i1.1
  4. Hoorn E.J. Intravenous fluids: balancing solutions. J. Nephrol. 2017; 30 (4): 485–92. DOI: 10.1007/s40620-016-0363-9
  5. Voldby A.W., Brandstrup B. Fluid therapy in the perioperative setting – a clinical review. J. Intensive Care. 2016; 4: 27. DOI: 10.1186/s40560-016-0154-3
  6. Habicher M., Perrino A.Jr, Spies C.D., von Heymann C., Wittkowski U., Sander M.J. Contemporary fluid management in cardiac anesthesia. Cardiothorac. Vasc. Anesth. 2011; 25 (6): 1141–53. DOI: 10.1053/j.jvca.2010.07.020
  7. Moroz G., Fominsky E.V., Shilova A.N., Karaskov A.M., Kornilov I.A., Pustovetova M.G., Lomivorotov V.V. Effect of targeted therapy with various infusion media on the content of extravascular lung water in cardiac patients. General Reanimatology. 2015; 11 (3): 54–64 (in Russ.).
  8. Ilyina Ya.Yu., Kuzkov V.V., Fot E.V., Smetkin A.A., Kirov M.Yu. Predicting response to fluid administration: current approaches and trends. Messenger of Anesthesiology and Resuscitation. 2017; 14 (3): 25–33 (in Russ.). DOI: 10.21292/2078-5658-2017-14-3-25-34
  9. Pang Q., Liu H., Chen B., Jiang Y. Restrictive and liberal fluid administration in major abdominal surgery. Saudi Med. J. 2017; 38 (2): 123–31. DOI: 10.15537/smj.2017.2.15077
  10. Berger M.M., Gradwohl-Matis I., Brunauer A., Ulmer H., Dunser M.W. Targets of perioperative fluid therapy and their effects on postoperative outcome: a systematic review and meta-analysis. Minerva Anestesiol. 2015; 81 (7): 794–808.
  11. Silva J.M. Jr, de Oliveira A.M., Nogueira F.A., Vianna P.M., Pereira Filho M.C., Dias L.F. et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit. Care. 2013; 17 (6): R288. DOI: 10.1186/cc13151
  12. Vretzakis G., Kleitsaki A., Stamoulis K., Bareka M., Georgopoulou S., Karanikolas M. et al. Intra-operative intravenous fluid restriction reduces perioperative red blood cell transfusion in elective cardiac surgery, especially in transfusion-prone patients: a prospective, randomized controlled trial. J. Cardiothorac. Surg. 2010; 5: 7. DOI: 10.1186/1749-8090-5-7
  13. Kingeter A.J., Kingeter M.A., Shaw A.D. Fluids and organ dysfunction: a narrative review of the literature and discussion of 5 controversial topics. J. Cardiothorac. Vasc. Anesth. 2018; 32 (5): 2054–66. DOI: 10.1053/j.jvca.2018.03.017
  14. Romagnoli S., Rizza A., Ricci Z. Fluid status assessment and management during the perioperative phase in adult cardiac surgery patients. J. Cardiothorac. Vasc. Anesth. 2016; 30 (4): 1076–84. DOI: 10.1053/j.jvca.2015.11.008
  15. Bentzer P., Griesdale D.E., Boyd J., MacLean K., Sirounis D., Ayas N.T. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016; 316 (12): 1298–309. DOI: 10.1001/jama.2016.12310
  16. Gelman S., Bigatello L. The physiologic basis for goaldirected hemodynamic and fluid therapy: the pivotal role of the venous circulation. Can. J. Anaesth. 2018; 65 (3): 294–308. DOI: 10.1007/s12630-017-1045-3
  17. Anker A.M., Prantl L., Strauss C., Brebant V., Heine N., Lamby P. et al. Vasopressor support vs. liberal fluid administration in deep inferior epigastric perforator (DIEP) free flap breast reconstruction – a randomized controlled trial. Clin. Hemorheol. Microcirc. 2018; 69 (1–2): 37–44. DOI: 10.3233/CH-189129
  18. Nakamoto S., Tatara T., Okamoto T., Hirose M. Complex effects of continuous vasopressor infusion on fluid responsiveness during liver resection: a randomised controlled trial. Eur. J. Anaesthesiol. 2019; 36 (9): 667–75. DOI: 10.1097/EJA.0000000000001046
  19. Wuethrich P.Y., Studer U.E., Thalmann G.N., Burkhard F.C. Intraoperative continuous norepinephrine infusion combined with restrictive deferred hydration significantly reduces the need for dlood transfusion in patients undergoing open radical cystectomy: results of a prospective randomised trial. Eur. Urol. 2014; 66 (2): 352–60. DOI: 10.1016/j.eururo.2013.08.046
  20. Li Y., Fu B., Qian X. Liberal versus restricted fluid administration in heart failure patients. A systematic review and meta-analysis of randomized trials. Int. Heart J. 2015; 56 (2): 192–5. DOI: 10.1536/ihj.14-288
  21. Kalmar A.F., Allaert S., Pletinckx P., Maes J.-W., Heerman J., Vos J.J. et al. Phenylephrine increases cardiac output by raising cardiac preload in patients with anesthesia induced hypotension. J. Clin. Monit. Comput. 2018; 32 (6): 969–76. DOI: 10.1007/s10877-018-0126-3
  22. Strunden M.S., Heckel K., Goetz A.E., Reuter D.A. Perioperative fluid and volume management: physiological basis, tools and strategies. Ann. Intensive Care. 2011; 1: 2. DOI: 10.1186/2110-5820-1-2
  23. Berg S., Engman A., Hesselvik J.F., Laurent T.C. Crystalloid infusion increases plasma hyaluronan. Crit. Care Med. 1994; 22 (10): 1563–7.
  24. Nieuwdorp M., van Haeften T.W., Gouverneur M.C.L.G., Mooij H.L., van Lieshout M.H.P., Levi M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006; 55 (2): 480–6. DOI: 10.2337/diabetes.55.02.06.db05-1103

About Authors

  • Gennadiy V. Yudin, Cand. Med. Sc., Anesthesiologist-Intensivist; ORCID
  • Yuris Yu. Aydashev, Anesthesiologist-Intensivist; ORCID
  • Mikhail M. Rybka, Dr. Med. Sc., Professor, Head of Department of Anesthesiology; ORCID
  • Dzhumber Ya. Khinchagov, Cand. Med. Sc., Anesthesiologist-Intensivist; ORCID
  • Bair V. Meshchanov, Anesthesiologist-Intensivist; ORCID
  • Andrey A. Goncharov, Anesthesiologist-Intensivist; ORCID

 If you found mistakes, select text and press Alt+A