Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sepsis and septic shock in cardiovascular surgery: modern methods of diagnostics and treatment

Authors: Bockeria L.A., Gasymov E.G., Abdulgasanov R.A., Abdulgasanova M.R.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2021-18-2-97-108

UDC: 616.12-089: 616.94

Link: Clinical Physiology of Blood Circulaiton. 2021; 2 (18): 97-108

Quote as: Bockeria L.A., Gasymov E.G., Abdulgasanov R.A., Abdulgasanova M.R. Sepsis and septic shock in cardiovascular surgery: modern methods of diagnostics and treatment. Clinical Physiology of Circulation. 2021; 18 (2): 97–108 (in Russ.). DOI: 10.24022/1814-6910-2021-18-2-97-108

Received / Accepted:  18.01.2021 / 02.02.2021

Download
Full text:  

Abstract

Despite the improvement of surgical methods and protection of the myocardium, anesthesia, the development of perioperative myocardial infarction during cardiac surgery remains a common occurrence and is combined with a decrease in the immediate and distant survival. The pathophysiology of intraoperative myocardial infarction in cardiac surgery is based on three leading mechanisms: 1) systemic and local inflammation; 2) disorders in the blood coagulation system; 3) neuroendocrine stress. Genetic variability is present in each of these regulatory pathways. Genetic variants of different pathways may be present in the same patient, modulating the amount of myocardial injury. This review presents the published data on identified genetic variants associated with perioperative myocardial infarction in patients undergoing cardiac surgery. In the future, genetic studies can help in the preoperative prognostic assessment of the risk of myocardial infarction.

References

  1. Бокерия Л.А, Абдулгасанов Р.А., Гасымов Э.Г., Аракелян В.С. Протезная инфекция грудной аорты: методы диагностики и лечения. Грудная и сердечнососудистая хирургия. 2020; 62 (2): 91–101. DOI: 10.24022/0236-2791-2020-62-2-91-101
  2. Абдулгасанов Р.А., Гасымов Э.Г., Аракелян В.С., Шогенов М.А. Микотическая аневризма аорты: методы диагностики и лечения. Грудная и сердечнососудистая хирургия. 2020; 62 (1): 14–23. DOI: 10.24022/0236-2791-2020-62-1-14-23
  3. Аракелян В.С., Абдулгасанов Р.А., Иванов А.В., Абдулгасанова М.Р., Гасымов Э.Г., Биганов Р.М. и др. Успешные случаи лечения протезной инфекции нисходящей грудной аорты с использованием антимикробных протезов «БАСЭКС». Сердечнососудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2019; 20 (S5): 90.
  4. Бокерия Л.А., Абдулгасанов Р.А., Гасымов Э.Г., Аракелян В.С. Протезная инфекция нисходящего отдела грудной аорты: методы диагностики и лечения. Анналы хирургии. 2019; 24 (5): 307–19. DOI: 10.24022/1560-9502-2019-245-307-319
  5. Dugar S., Choudhary C., Duggal A. Sepsis and septic shock: guideline-based management. Cleve. Clin. J. Med. 2020; 87 (1): 53–64. DOI: 10.3949/ccjm. 87a.18143 Обзоры 105 Клиническая физиология кровообращения. 2021; 18 (2). DOI: 10.24022/1814-6910-2021-18-2-97-108
  6. Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001; 29 (7): 1303–10. DOI: 10.1097/00003246- 200107000-00002
  7. Hall M.J., Williams S.N., DeFrances C.J., Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011; 62: 1–8. PMID: 22142805
  8. Dellinger R.P. The surviving sepsis campaign: where have we been and where are we going? Cleve Clin. J. Med. 2015; 82 (4): 237–44. DOI: 10.3949/ccjm.82gr.15001
  9. Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101 (6): 1644–55. DOI: 10.1378/chest.101.6.1644
  10. Levy M.M., Fink M.P., Marshall J.C., Abraham E., Angus D., Cook D. et al; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003; 31 (4): 1250–6. DOI: 10.1097/01.CCM. 0000050454.01978.3B
  11. Levy M.M., Rhodes A., Phillips G.S., Townsend S.R., Schorr C.A., Beale R. et al. Surviving sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit. Care Med. 2015; 43 (1): 3–12. DOI: 10.1097/CCM.0000000000000723
  12. National Quality Forum (NQF). NQF revises sepsis measure. www.qualityforum.org/NQF_Revises_Sepsis_ Measure.aspx (accessed December 11, 2019).
  13. Singer M., Deutschman C.S., Seymour C.W., ShankarHari M., Annane D., Bauer M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 801–10. DOI: 10.1001/jama.2016.0287
  14. Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonca A., Bruining H. et al. The SOFA (Sepsisrelated Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intens. Care Med. 1996; 22 (7): 707–10. PMID: 8844239. DOI: 10.1007/bf01709751
  15. Fernando S.M., Tran A., Taljaard M., Cheng W., Rochwerg B., Seely A.J.E. et al. Systemic inflamatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Ann. Intern. Med. 2018; 168 (4): 266–75. DOI: 10.7326/M17-2820
  16. Gül F., Arslantas M.K., Cinel I., Kumar A. Changing definitions of sepsis. Turk. J. Anaesthesiol. Reanim. 2017; 45 (3): 129–38. DOI: 10.5152/TJAR.2017.93753
  17. Seymour C.W., Liu V.X., Iwashyna T.J., Brunkhorst F.M., Rea T.D., Scherag A. et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 762–74. DOI: 10.1001/jama. 2016.0288
  18. Williams J.M., Greenslade J.H., McKenzie J.V., Chu K., Brown A.F.T., Lipman J. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Chest. 2017; 151 (3): 586–96. DOI: 10.1016/j.chest. 2016.10.057
  19. Kumar A., Ellis P., Arabi Y., Roberts D., Light B., Parillo J.E. et al.; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009; 136 (5): 1237–48. DOI: 10.1378/chest.09-0087
  20. Kumar A., Roberts D., Wood K.E., Light B., Parillo J.E., Sharma S. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006; 34 (6): 1589–96. DOI: 10.1097/01.CCM.0000217961.75225.E9
  21. Ferrer R., Martin-Loeches I., Phillips G., Osborn T.M., Townsend S., Dellinger R.P. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit. Care Med. 2014; 42 (8): 1749–55. DOI: 10.1097/CCM.0000000000000330
  22. Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intens. Care Med. 2017; 43 (3): 304–77. DOI: 10.1007/s00134-017-4683-6
  23. Micek S.T., Welch E.C., Khan J., Pervez M., Doherty J., Reichley R.M. et al. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to gram-negative bacteria: a retrospective analysis. Antimicr. Agents Chemother. 2010; 54 (5): 1742–8. DOI: 10.1128/AAC.01365-09
  24. Martin G.S., Mannino D.M., Eaton S., Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003; 348 (16): 1546–54. DOI: 10.1056/NEJMoa022139
  25. Pappas P.G., Kauffman C.A., Andes D.R., Clancy C.J., Marr K.A., Ostrosky-Zeichner L. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016; 62 (4): e1–e50. DOI: 10.1093/cid/civ933
  26. Garnacho-Montero J., GutiОrrez-Pizarraya A., Escoresca-Ortega A., Corcia-Palomo Y., Delgado E.F., Melero I.H. et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intens. Care Med. 2014; 40 (1): 32–40. DOI: 10.1007/s00134-013-3077-7
  27. Paonessa J.R., Shah R.D., Pickens C.I., Lizza B.D., Donnelly H.K., Malczynski M. et al. Rapid detection of methicillin-resistant Staphylococcus aureus in BAL. Chest. 2019; 155 (5): 999–1007. DOI: 10.1016/j.chest.2019.02.007
  28. Parente D.M., Cunha C.B., Mylonakis E., Timbrook T.T. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: a diagnostic meta-analysis with antimicrobial stewardship implications. Clin. Infect. Dis. 2018; 67 (1): 1–7. DOI: 10.1093/cid/ciy024
  29. Chastre J., Wolff M., Fagon J.Y., Chevret S., Thomas F., Wermert D. et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003; 290 (19): 2588–98. DOI: 10.1001/jama.290.19.2588
  30. Pugh R., Grant C., Cooke R.P., Dempsey G. Shortcourse versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 2011; (10): CD007577. DOI: 10.1002/14651858.CD007577.pub2
  31. Sakr Y., Rubatto Birri P.N., Kotfis K., Nanchal R., Shah B., Kluge S. et al.; Intensive Care Over Nations Investigators. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit. Care Med. 2017; 45 (3): 386–394. DOI: 10.1097/CCM.0000000000002189
  32. Malbrain M.L., Marik P.E., Witters I., Cordemans C., Kirkpatrick A.W., Roberts D.J. et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesth. Intens. Ther. 2014; 46 (5): 361–80. DOI: 10.5603/AIT.2014.0060
  33. Seymour C.W., Gesten F., Prescott H.C., Friedrich M.E., Iwashyna T.J., Phillips G.S. et al. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017; 376 (23): 2235–44. DOI: 10.1056/NEJMoa1703058
  34. Marik P.E., Baram M., Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008; 134 (1): 172–8. DOI: 10.1378/chest.07- 2331
  35. Bednarczyk J.M., Fridfinnson J.A., Kumar A., Blanchard L., Rabbani R., Bell D. et al. Incorporating dynamic assessment of fluid responsiveness into goaldirected therapy: a systematic review and meta-analysis. Crit. Care Med. 2017; 45 (9): 1538–45. DOI: 10.1097/CCM.0000000000002554
  36. Marik P.E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit. Care Med. 2009; 37 (9): 2642–7. DOI: 10.1097/CCM.0b013e3181a590da
  37. Monnet X., Marik P., Teboul J.L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intens. Care Med. 2016; 42 (12): 1935–47. DOI: 10.1007/s00134-015-4134-1
  38. Cecconi M., De Backer D., Antonelli M., Beale R., Bakker J., Hofer C. et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intens. Care Med. 2014; 40 (12): 1795–815. DOI: 10.1007/s00134-014-3525-z
  39. Mahjoub Y., Lejeune V., Muller L., Perbet S., Zieleskiewicz L., Bart F. et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br. J. Anaesth. 2014; 112 (4): 681–5. DOI: 10.1093/bja/aet442
  40. Cherpanath T.G., Hirsch A., Geerts B.F., Lagrand W.K., Leeflang M.M., Schultz M.J. et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit. Care Med. 2016; 44 (5): 981–91. DOI: 10.1097/CCM.0000000000001556
  41. Jansen T.C., van Bommel J., Schoonderbeek F.J., Visser S.J., van der Klooster J.M., Lima A.P. et al.; LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am. J. Respir. Crit. Care Med. 2010; 182 (6): 752–61. DOI: 10.1164/rccm.200912-1918OC
  42. Casserly B., Phillips G.S., Schorr C., Dellinger R.P., Townsend S.R., Osborn T.M. et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit. Care Med. 2015; 43 (3): 567–73. DOI: 10.1097/CCM.0000000000000742
  43. Jones A.E., Shapiro N.I., Trzeciak S., Arnold R.C., Claremont H.A., Kline J.A.; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303 (8): 739–46. DOI: 10.1001/jama.2010.158
  44. Hernández G., Ospina-Tascón G.A., Damiani L.P., Estenssoro E., Dubin A., Hurtado J. et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDASHOCK Randomized Clinical Trial. JAMA. 2019; 321 (7): 654–64. DOI: 10.1001/jama.2019.0071
  45. Semler M.W., Self W.H., Wanderer J.P., Ehrenfeld J.M., Wang L., Byrne D.W. et al.; SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 2018; 378 (9): 829–39. DOI: 10.1056/NEJMoa1711584
  46. Young P., Bailey M., Beasley R., Henderson S., Mackle D., McArthur C. et al.; SPLIT Investigators; ANZICS CTG. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT Randomized Clinical Trial. JAMA. 2015; 314 (16): 1701–10. DOI: 10.1001/jama.2015.12334
  47. Krajewski M.L., Raghunathan K., Paluszkiewicz S.M., Schermer C.R., Shaw A.D. Meta-analysis of high-versus low-chloride content in perioperative and critical care fluid resuscitation. Br. J. Surg. 2015; 102 (1): 24–36. DOI: 10.1002/bjs.9651
  48. Finfer S., Bellomo R., Boyce N., French J., Myburgh J., Norton R.; SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N. Engl. J. Med. 2004; 350 (22): 2247–56. DOI: 10.1056/NEJMoa040232
  49. Caironi P., Gattinoni L. The clinical use of albumin: the point of view of a specialist in intensive care. Blood Transfus. 2009; 7 (4): 259–67. DOI: 10.2450/2009.0002-09
  50. Annane D., Siami S., Jaber S., Martin C., Elatrous S., Declere A.D. et al; CRISTAL Investigators. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013; 310 (17): 1809–17. DOI: 10.1001/jama. 2013.280502
  51. Jiang L., Jiang S., Zhang M., Zheng Z., Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014; 9 (12): e114666. DOI: 10.1371/journal.pone.0114666
  52. Perner A., Haase N., Guttormsen A.B., Tenhunen J., Klemenzson G., Aneman A. et al.; 6S Trial Group; Scandinavian Critical Care Trials Group. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012; 367 (2): 124–34. DOI: 10.1056/NEJMoa1204242
  53. Jimenez M.F., Marshall J.C.; International Sepsis Forum. Source control in the management of sepsis. Intens. Care Med. 2001; 27 (Suppl. 1): S49–S62. DOI: 10.1007/pl00003797
  54. Asfar P., Meziani F., Hamel J.F., Grelon F., Megarbane B., Anguel N. et al; SEPSISPAM Investigators. High versus low blood-pressure target in patients with septic shock. N. Engl. J. Med. 2014; 370 (17): 1583–93. DOI: 10.1056/NEJMoa1312173
  55. Leone M., Asfar P., Radermacher P., Vincent J.L., Martin C. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit. Care. 2015; 19: 101. DOI: 10.1186/s13054-015-0794-z
  56. De Backer D., Biston P., Devriendt J., Madl C., Chochrad D., Aldecoa C. et al.; SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010; 362 (9): 779–89. DOI: 10.1056/NEJMoa0907118
  57. De Backer D., Aldecoa C., Njimi H., Vincent J.L. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit. Care Med. 2012; 40 (3): 725–30. DOI: 10.1097/CCM.0b013e31823778ee
  58. Avni T., Lador A., Lev S., Leibovici L., Paul M., Grossman A. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One. 2015; 10 (8): e0129305. DOI: 10.1371/journal.pone.0129305
  59. Gamper G., Havel C., Arrich J., Losert H., Pace N.L., Mullner M. et al. Vasopressors for hypotensive shock. Cochrane Database Syst. Rev. 2016; 2: CD003709. DOI: 10.1002/14651858.CD003709.pub4
  60. Scheeren T.W.L., Bakker J., De Backer D., Annane D., Asfar P., Christiaan E. et al. Current use of vasopressors in septic shock. Ann. Intens. Care. 2019; 9 (1): 20. DOI: 10.1186/s13613-019-0498-7
****
  1. Bockeria L.A., Abdulgasanov R.A., Gasymov E.G., Arakelyan V.S. Prosthetic infection of the thoracic aorta: methods of diagnosis and treatment. Russian Journal of Thoracic and Cardiovascular Surgery. 2020; 62 (2): 91–101 (in Russ.). DOI: 10.24022/0236-2791- 2020-62-2-91-101
  2. Abdulgasanov R.A., Gasymov E.G., Arakelyan V.S., Shogenov M.A. Micotic aortic aneurysm: methods of diagnosis and treatment. Russian Journal of Thoracic and Cardiovascular Surgery. 2020; 62 (1): 14–23 (in Russ.). DOI: 10.24022/0236-2791-2020-62-1-14-23
  3. Arakelyan V.S., Abdulgasanov R.A., Ivanov A.V., Abdulgasanova M.R., Gasymov E.G., Biganov R.M. et al. Succesful cases of surgical treatment of prosthetic infection of the de-scending thoracic aorta using antimicrobial prostheses «BASEX». The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2019; 20 (S5): 90 (in Russ.).
  4. Bockeria L.A., Abdulgasanov R.A., Gasymov E.G., Arakelyan V.S. Prosthetic infection of the descending thoracic aorta: methods of diagnosis and treatment. Russian Annals of Surgery. 2019; 24 (5): 307–19 (in Russ.). DOI: 10.24022/1560-9502-2019-245-07-319
  5. Dugar S., Choudhary C., Duggal A. Sepsis and septic shock: guideline-based management. Cleve. Clin. J. Med. 2020; 87 (1): 53–64. DOI: 10.3949/ccjm. 87a.18143
  6. Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001; 29 (7): 1303–10. DOI: 10.1097/00003246- 200107000-00002
  7. Hall M.J., Williams S.N., DeFrances C.J., Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011; 62: 1–8. PMID: 22142805
  8. Dellinger R.P. The surviving sepsis campaign: where have we been and where are we going? Cleve Clin. J. Med. 2015; 82 (4): 237–44. DOI: 10.3949/ccjm.82gr.15001
  9. Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A. et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101 (6): 1644–55. DOI: 10.1378/chest.101.6.1644
  10. Levy M.M., Fink M.P., Marshall J.C., Abraham E., Angus D., Cook D. et al; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003; 31 (4): 1250–6. DOI: 10.1097/01.CCM. 0000050454.01978.3B
  11. Levy M.M., Rhodes A., Phillips G.S., Townsend S.R., Schorr C.A., Beale R. et al. Surviving sepsis campaign: association between performance metrics and outcomes in a 7.5-year study. Crit. Care Med. 2015; 43 (1): 3–12. DOI: 10.1097/CCM.0000000000000723
  12. National Quality Forum (NQF). NQF revises sepsis measure. www.qualityforum.org/NQF_Revises_Sepsis_ Measure.aspx (accessed December 11, 2019).
  13. Singer M., Deutschman C.S., Seymour C.W., ShankarHari M., Annane D., Bauer M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 801–10. DOI: 10.1001/jama.2016.0287
  14. Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonca A., Bruining H. et al. The SOFA (Sepsisrelated Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intens. Care Med. 1996; 22 (7): 707–10. PMID: 8844239. DOI: 10.1007/bf01709751
  15. Fernando S.M., Tran A., Taljaard M., Cheng W., Rochwerg B., Seely A.J.E. et al. Systemic inflamatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Ann. Intern. Med. 2018; 168 (4): 266–75. DOI: 10.7326/M17-2820
  16. Gül F., Arslantas M.K., Cinel I., Kumar A. Changing definitions of sepsis. Turk. J. Anaesthesiol. Reanim. 2017; 45 (3): 129–38. DOI: 10.5152/TJAR.2017.93753
  17. Seymour C.W., Liu V.X., Iwashyna T.J., Brunkhorst F.M., Rea T.D., Scherag A. et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315 (8): 762–74. DOI: 10.1001/jama. 2016.0288
  18. Williams J.M., Greenslade J.H., McKenzie J.V., Chu K., Brown A.F.T., Lipman J. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Chest. 2017; 151 (3): 586–96. DOI: 10.1016/j.chest. 2016.10.057
  19. Kumar A., Ellis P., Arabi Y., Roberts D., Light B., Parillo J.E. et al.; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009; 136 (5): 1237–48. DOI: 10.1378/chest.09-0087
  20. Kumar A., Roberts D., Wood K.E., Light B., Parillo J.E., Sharma S. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006; 34 (6): 1589–96. DOI: 10.1097/01.CCM.0000217961.75225.E9
  21. Ferrer R., Martin-Loeches I., Phillips G., Osborn T.M., Townsend S., Dellinger R.P. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit. Care Med. 2014; 42 (8): 1749–55. DOI: 10.1097/CCM.0000000000000330
  22. Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intens. Care Med. 2017; 43 (3): 304–77. DOI: 10.1007/s00134-017-4683-6
  23. Micek S.T., Welch E.C., Khan J., Pervez M., Doherty J., Reichley R.M. et al. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to gram-negative bacteria: a retrospective analysis. Antimicr. Agents Chemother. 2010; 54 (5): 1742–8. DOI: 10.1128/AAC.01365-09
  24. Martin G.S., Mannino D.M., Eaton S., Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003; 348 (16): 1546–54. DOI: 10.1056/NEJMoa022139
  25. Pappas P.G., Kauffman C.A., Andes D.R., Clancy C.J., Marr K.A., Ostrosky-Zeichner L. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016; 62 (4): e1–e50. DOI: 10.1093/cid/civ933
  26. Garnacho-Montero J., GutiОrrez-Pizarraya A., Escoresca-Ortega A., Corcia-Palomo Y., Delgado E.F., Melero I.H. et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intens. Care Med. 2014; 40 (1): 32–40. DOI: 10.1007/s00134-013-3077-7
  27. Paonessa J.R., Shah R.D., Pickens C.I., Lizza B.D., Donnelly H.K., Malczynski M. et al. Rapid detection of methicillin-resistant Staphylococcus aureus in BAL. Chest. 2019; 155 (5): 999–1007. DOI: 10.1016/j.chest.2019.02.007
  28. Parente D.M., Cunha C.B., Mylonakis E., Timbrook T.T. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: a diagnostic meta-analysis with antimicrobial stewardship implications. Clin. Infect. Dis. 2018; 67 (1): 1–7. DOI: 10.1093/cid/ciy024
  29. Chastre J., Wolff M., Fagon J.Y., Chevret S., Thomas F., Wermert D. et al; PneumA Trial Group. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003; 290 (19): 2588–98. DOI: 10.1001/jama.290.19.2588
  30. Pugh R., Grant C., Cooke R.P., Dempsey G. Shortcourse versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst. Rev. 2011; (10): CD007577. DOI: 10.1002/14651858.CD007577.pub2
  31. Sakr Y., Rubatto Birri P.N., Kotfis K., Nanchal R., Shah B., Kluge S. et al.; Intensive Care Over Nations Investigators. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit. Care Med. 2017; 45 (3): 386–394. DOI: 10.1097/CCM.0000000000002189
  32. Malbrain M.L., Marik P.E., Witters I., Cordemans C., Kirkpatrick A.W., Roberts D.J. et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesth. Intens. Ther. 2014; 46 (5): 361–80. DOI: 10.5603/AIT.2014.0060
  33. Seymour C.W., Gesten F., Prescott H.C., Friedrich M.E., Iwashyna T.J., Phillips G.S. et al. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017; 376 (23): 2235–44. DOI: 10.1056/NEJMoa1703058
  34. Marik P.E., Baram M., Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008; 134 (1): 172–8. DOI: 10.1378/chest.07- 2331
  35. Bednarczyk J.M., Fridfinnson J.A., Kumar A., Blanchard L., Rabbani R., Bell D. et al. Incorporating dynamic assessment of fluid responsiveness into goaldirected therapy: a systematic review and meta-analysis. Crit. Care Med. 2017; 45 (9): 1538–45. DOI: 10.1097/CCM.0000000000002554
  36. Marik P.E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit. Care Med. 2009; 37 (9): 2642–7. DOI: 10.1097/CCM.0b013e3181a590da
  37. Monnet X., Marik P., Teboul J.L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intens. Care Med. 2016; 42 (12): 1935–47. DOI: 10.1007/s00134-015-4134-1
  38. Cecconi M., De Backer D., Antonelli M., Beale R., Bakker J., Hofer C. et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intens. Care Med. 2014; 40 (12): 1795–815. DOI: 10.1007/s00134-014-3525-z
  39. Mahjoub Y., Lejeune V., Muller L., Perbet S., Zieleskiewicz L., Bart F. et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br. J. Anaesth. 2014; 112 (4): 681–5. DOI: 10.1093/bja/aet442
  40. Cherpanath T.G., Hirsch A., Geerts B.F., Lagrand W.K., Leeflang M.M., Schultz M.J. et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit. Care Med. 2016; 44 (5): 981–91. DOI: 10.1097/CCM.0000000000001556
  41. Jansen T.C., van Bommel J., Schoonderbeek F.J., Visser S.J., van der Klooster J.M., Lima A.P. et al.; LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am. J. Respir. Crit. Care Med. 2010; 182 (6): 752–61. DOI: 10.1164/rccm.200912-1918OC
  42. Casserly B., Phillips G.S., Schorr C., Dellinger R.P., Townsend S.R., Osborn T.M. et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit. Care Med. 2015; 43 (3): 567–73. DOI: 10.1097/CCM.0000000000000742
  43. Jones A.E., Shapiro N.I., Trzeciak S., Arnold R.C., Claremont H.A., Kline J.A.; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303 (8): 739–46. DOI: 10.1001/jama.2010.158
  44. Hernández G., Ospina-Tascón G.A., Damiani L.P., Estenssoro E., Dubin A., Hurtado J. et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDASHOCK Randomized Clinical Trial. JAMA. 2019; 321 (7): 654–64. DOI: 10.1001/jama.2019.0071
  45. Semler M.W., Self W.H., Wanderer J.P., Ehrenfeld J.M., Wang L., Byrne D.W. et al.; SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 2018; 378 (9): 829–39. DOI: 10.1056/NEJMoa1711584
  46. Young P., Bailey M., Beasley R., Henderson S., Mackle D., McArthur C. et al.; SPLIT Investigators; ANZICS CTG. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT Randomized Clinical Trial. JAMA. 2015; 314 (16): 1701–10. DOI: 10.1001/jama.2015.12334
  47. Krajewski M.L., Raghunathan K., Paluszkiewicz S.M., Schermer C.R., Shaw A.D. Meta-analysis of high-versus low-chloride content in perioperative and critical care fluid resuscitation. Br. J. Surg. 2015; 102 (1): 24–36. DOI: 10.1002/bjs.9651
  48. Finfer S., Bellomo R., Boyce N., French J., Myburgh J., Norton R.; SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N. Engl. J. Med. 2004; 350 (22): 2247–56. DOI: 10.1056/NEJMoa040232
  49. Caironi P., Gattinoni L. The clinical use of albumin: the point of view of a specialist in intensive care. Blood Transfus. 2009; 7 (4): 259–67. DOI: 10.2450/2009.0002-09
  50. Annane D., Siami S., Jaber S., Martin C., Elatrous S., Declere A.D. et al; CRISTAL Investigators. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013; 310 (17): 1809–17. DOI: 10.1001/jama.2013.280502
  51. Jiang L., Jiang S., Zhang M., Zheng Z., Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014; 9 (12): e114666. DOI: 10.1371/journal.pone.0114666
  52. Perner A., Haase N., Guttormsen A.B., Tenhunen J., Klemenzson G., Aneman A. et al.; 6S Trial Group; Scandinavian Critical Care Trials Group. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012; 367 (2): 124–34. DOI: 10.1056/NEJMoa1204242
  53. Jimenez M.F., Marshall J.C.; International Sepsis Forum. Source control in the management of sepsis. Intens. Care Med. 2001; 27 (Suppl. 1): S49–S62. DOI: 10.1007/pl00003797
  54. Asfar P., Meziani F., Hamel J.F., Grelon F., Megarbane B., Anguel N. et al; SEPSISPAM Investigators. High versus low blood-pressure target in patients with septic shock. N. Engl. J. Med. 2014; 370 (17): 1583–93. DOI: 10.1056/NEJMoa1312173
  55. Leone M., Asfar P., Radermacher P., Vincent J.L., Martin C. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit. Care. 2015; 19: 101. DOI: 10.1186/s13054-015-0794-z
  56. De Backer D., Biston P., Devriendt J., Madl C., Chochrad D., Aldecoa C. et al.; SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 2010; 362 (9): 779–89. DOI: 10.1056/NEJMoa0907118
  57. De Backer D., Aldecoa C., Njimi H., Vincent J.L. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit. Care Med. 2012; 40 (3): 725–30. DOI: 10.1097/CCM.0b013e31823778ee
  58. Avni T., Lador A., Lev S., Leibovici L., Paul M., Grossman A. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One. 2015; 10 (8): e0129305. DOI: 10.1371/journal.pone.0129305
  59. Gamper G., Havel C., Arrich J., Losert H., Pace N.L., Mullner M. et al. Vasopressors for hypotensive shock. Cochrane Database Syst. Rev. 2016; 2: CD003709. DOI: 10.1002/14651858.CD003709.pub4
  60. Scheeren T.W.L., Bakker J., De Backer D., Annane D., Asfar P., Christiaan E. et al. Current use of vasopressors in septic shock. Ann. Intens. Care. 2019; 9 (1): 20. DOI: 10.1186/s13613-019-0498-7

About Authors

  • Inna V. Koksheneva, Dr. Med. Sc., Senior Researcher; ORCID
  • Irakliy T. Zakaraya, Junior Researcher
  • Amina I. Maloroeva, Postgraduate

 If you found mistakes, select text and press Alt+A