Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The value of intraoperative autohemoexfusion in transfusion therapy in cardiac surgery patients

Authors: Tsar’kov A.V., Safronova N.N., Andreevskikh A.A., Gladkikh F.A., Gosnits M.V.

Company:
Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2021-18-3-222-230

UDC: 615.38:616.12-089

Link: Clinical Physiology of Blood Circulaiton. 2021; 3 (18): 222-230

Quote as: Tsar’kov A.V., Safronova N.N., Andreevskikh A.A., Gladkikh F.A., Gosnits M.V. The value of intraoperative autohemoexfusion in transfusion therapy in cardiac surgery patients. Clinical Physiology of Circulation. 2021; 18 (3): 222–30 (in Russ.). DOI: 10.24022/1814-6910-2021-18-3-222-230

Received / Accepted:  26.02.2021 / 08.06.2021

Download
Full text:  

Abstract

Objective. To determine the value of intraoperative autohemoexfusion on transfusion therapy in cardiac surgery patients with the use of cardiopulmonary bypass at the Chelyabinsk Regional Clinical Hospital for the period 2018–2020.

Material and methods. A retrospective analysis of transfusion tactics was carried out in patients (n = 995) who underwent cardiac surgery with cardiopulmonary bypass. The effect of intraoperative autohemoexfusion on the need for transfusion of allogenic blood was assessed, the effect of transfusion of erythrocyte-containing blood components and fresh frozen plasma (FFP) on the duration of mechanical ventilation and the timing of patients' extubation in the postoperative period.

Results. From 2018 to 2020, the number of autologous blood transfusion increased significantly – from 13 to 140, respectively. The volume of transfusion significantly decreased (p < 0.001): 2018 – the volume of blood transfusion 572.8 ± 474.8 ml (95% CI 520.4–625.1 ml), FFP 810.4 ± 388.2 ml (95% CI 767.6–853.2 ml); 2020 – the volume of blood is 287.7 ± 430.1 ml (95% CI 238.4–336.9 ml), FFP 184.4 ± 454.6 ml (95% CI 132.3–236.5 ml). Delayed extubation (> 6 hours) OR 3.5 (95% CI 2.6–4.8) for blood transfusion (V = 0.27) and OR 5.7 (95% CI 4.1–8.0) for FFP transfusion (V = 0.36).

Conclusion. From 2018 to 2020, a decrease in the transfusion of blood and its components was noted in Chelyabinsk regional clinical hospital. The most significant change in tactics was intraoperative autohemoexfusion, which demonstrated sufficient safety and efficacy

References

  1. Tempe D.K., Khurana P. Optimal blood transfusion practice in cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2018; 32 (6): 2743–5. DOI: 10.1053/j.jvca.2018.05.051
  2. Stover E.P., Siegel L.C., Parks R., Levin J., Body S.C., Maddi R. et al. Variability in transfusion practice for coronary artery bypass surgery persists despite national consensus guidelines: a 24-institution study. Institutions of the Multicenter Study of Perioperative Ischemia Research Group. Anesthesiology. 1998; 88: 327–33. DOI: 10.1097/00000542-199802000-00009
  3. Geiβler R.G., Franz D., Buddendick H., Krakowitzky P., Bunzemeier H., Roeder N. et al. Retrospective analysis of the blood component utilization in a University Hospital of Maximum Medical Care. Transfus. Med. Hemother. 2012; 39 (2): 129–38. DOI: 10.1159/000337956
  4. Loor G., Rajeswaran J., Li L., Sabik J.F., 3rd, Blackstone E.H., McCrae K.R., Koch C.G. The least of 3 evils: exposure to red blood cell transfusion, anemia, or both? J. Thoracic. Cardiovasc. Surg. 2013; 146 (6): 1480–7.e6. DOI: 10.1016/j.jtcvs.2013.06.033
  5. Kilic A., Whitman G.J. Blood transfusions in cardiac surgery: indications, risks, and conservation strategies. Ann. Thorac. Surg. 2014; 97 (2): 726–34. DOI: 10.1016/j.athoracsur.2013.08.016 6. Reesink H.W., Lee J., Keller A., Dennington P. Measures to prevent transfusion-related acute lung injury (TRALI). Vox Sang. 2012; 103 (3): 231–59. DOI: 10.1111/j.1423-0410.2012.01596.x
  6. Жибурт Е.Б. Связанное с трансфузией острое повреждение легких (ТРАЛИ). М.: Национальный медико-хирургический центр им. Н.И. Пирогова; 2010. Zhiburt E.B. Transfusion-related acute lung injury (TRALI). Moscow; 2010 (in Russ.).
  7. Трекова Н.А., Гуськов Д.А., Аксельрод Б.А., Дымова О.В., Губко А.В., Гладышева В.Г. Влияние интраоперационной нормоволемической гемодилюции на гемостаз, кровопотерю и показания к трансфузии донорских эритроцитов при операциях на сердце в условиях искусственного кровообращения. Вестник анестезиологии и реаниматологии. 2018; 15 (4): 5–13. DOI: 10.21292/2078-5658-2018-15-4-5-13 Trekova N.А., Guskov D.А., Аkselrod B.А., Dymova O.V., Gubko А.V., Gladysheva V.G. Impact of perioperative normovolemic hemodilution on hemostasis, blood loss and indications to transfusion of donor erythrocytes during cardiac surgery with cardiopulmonary bypass. Messenger of Anesthesiology and Resuscitation. 2018; 15 (4): 5–13 (in Russ.). DOI: 10.21292/2078- 5658-2018-15-4-5-13
  8. Stammers A.H., Mongero L.B., Tesdahl E., Stasko A., Weinstein S. The effectiveness of acute normolvolemic hemodilution and autologous prime on intraoperative blood management during cardiac surgery. Perfusion. 2017; 32 (6): 454–65. DOI: 10.1177/0267659117706014
  9. Wahba A., Milojevic M., Boer Ch., De Somer F., Gudbjartsson T. EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur. J. Cardio-Thorac. Surg. 2020; 57 (2): 207–9. DOI: 10.1093/ejcts/ezz358
  10. Chan J.L., Miller J.G., Murphy M., Greenberg A., Iraola M., Horvath K.A. A multidisciplinary protocoldriven approach to improve extubation times after cardiac surgery. Ann. Thorac. Surg. 2018; 105 (6): 1684–90. DOI: 10.1016/j.athoracsur.2018.02.008
  11. Dyke C., Aronson S., Dietrich W. Universal definition of perioperative bleeding in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2014; 147 (5): 1458–63.e1. DOI: 10.1016/j.jtcvs.2013.10.070
  12. Gregory A.J., Grant M.C., Manning M.W. Enhanced Recovery After Cardiac Surgery (ERAS Cardiac) Recommendations: an important first step-but there is much work to be done. J. Cardiothorac. Vasc. Anesth. 2020; 34 (1): 39–47. DOI: 10.1053/j.jvca.2019. 09.002
  13. Popovsky M.A., Moore S.B. Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion. 1985; 25: 573–7. DOI: 10.1046/j.1537-2995.1985.25686071434.x
  14. Vlaar A.P.J., Hofstra J.J., Determann R.M., Veelo D.P., Paulus F., Kulik W. et al. The incidence, risk factors, and outcome of transfusion-related acute lung injury in a cohort of cardiac surgery patients: a prospective nested case-control study. Blood. 2011; 117 (16): 4218–25. DOI: 10.1182/blood-2010-10-313973
  15. Engelman D.T., Ben Ali W., Williams J.B., Perrault L.P., Seenu Reddy V. Guidelines for perioperative care in cardiac surgery enhanced recovery after Surgery Society recommendations. JAMA Surgery. 2019; 154 (8): 755–66. DOI: 10.1001/jamasurg.2019.1153
  16. Sharma R., Sharma S. Physiology. Blood Volume. StatPearls Publishing; 2020.

About Authors

  • Artem V. Tsar’kov, Anesthesiologist-Intensivist; ORCID
  • Natal’ya N. Safronova, Cand. Med. Sci., Head of Anesthesiology Department No. 1
  • Andrey A. Andreevskikh, Anesthesiologist-Intensivist
  • Filipp A. Gladkikh, Anesthesiologist-Intensivist
  • Maksim V. Gosnits, Anesthesiologist-Intensivist

 If you found mistakes, select text and press Alt+A