Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Anatomy and geometry of bifurcation of the common carotid artery

Authors: Derbilova V.P., Vinogradov R.A., Kapran T.I., Zakharov Yu.N., Borisov V.G., Vinogradova E.R., Sukho￾ruchkin P.V., Baryshev A.G.

Company:
1 Kuban State Medical University, Krasnodar, Russian Federation
2 Research Institute – Ochapovsky Regional Clinical Hospital No. 1, Krasnodar, Russian Federation
3 Kemerovo State University, Kemerovo, Russian Federation
4 Federal Research Center for Information and Computational Technologies, Novosibirsk, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2022-19-1-25-32

UDC: 616.133-007.5

Link: Clinical Physiology of Blood Circulaiton. 2022; 1 (19): 25-32

Quote as: Derbilova V.P., Vinogradov R.A., Kapran T.I., Zakharov Yu.N., Borisov V.G., Vinogradova E.R., Sukhoruchkin P.V., Baryshev A.G. Anatomy and geometry of bifurcation of the common carotid artery. Clinical Physiology of Circulation. 2022; 19 (1): 25–32 (in Russ.). DOI: 10.24022/1814-6910-2022-19-1-25-32

Received / Accepted:  24.12.2021 / 12.01.2022

Download
Full text:  

Abstract

The aim of the study was to analyze the anatomical and geometric characteristics of the bifurcation of the common carotid artery, which contribute to the risk of atherosclerosis. We conducted an electronic bibliographic search Pubmed, Cochrane Library, Wiley to study the anatomy and geometry of the bifurcation of the common carotid artery from 2011–2021. In accordance with the inclusion and exclusion criteria, 20 sources were selected, in which indicators were analyzed: diagnostic methods, anatomical and geometric parameters of 4432 patients. The surgical anatomy of the bifurcation of the common carotid artery is unique. Despite extensive and numerous studies, there are no concepts of the norm for the height of the bifurcation, the diameters of the arteries, their length and the degree of tortuosity. In addition, carotid bifurcation is involved in many pathological processes, the most common of which is atherosclerosis. Atherosclerosis of the brachiocephalic arteries is an important predisposing factor for the development of ischemic stroke and disability, while the geometry of the bifurcation of the common carotid artery plays an independent risk factor for the progression of the atherosclerotic process. Therefore, a detailed knowledge of various anatomical parameters is of paramount importance not only for understanding the disease, but also for the development of surgical treatment methods.

References

  1. Pahwa R., Jialal I. Atherosclerosis. StatPearls Publishing; 2021.
  2. Phrommintikul A., Krittayaphong R., Wongcharoen W., Yamwong S., Boonyaratavej S., Kunjara-Na-Ayudhya R. et al. Management of atherosclerosis risk factors for patients at high cardiovascular risk in real-world practice: a multicentre study. Sing. Med. J. 2017; 58 (9): 535–42.
  3. Zaromytidou M., Siasos G., Coskun A., Lucier M., Antoniadis A., Papafaklis M. et al. Intravascular hemodynamics and coronary artery disease: new insights and clinical implications. Hellenic J. Cardiol. 2016; 57 (6): 389–400. DOI: 10.1016/j.hjc.2016.11.019
  4. Cibis M., Potters W., Selwaness M., Gijsen F., Franco O., Arias Lorza A. et al. Relation between wall shear stress and carotid artery wall thickening MRI versus CFD. J. Biomech. 2016; 49 (5): 735–41. DOI: 10.1016/j. jbiomech.2016.02.004
  5. Malek A., Alper S., Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999; 282 (21): 2035–42. DOI: 10.1001/jama.282.21.2035
  6. Dolan J., Kolega J., Meng H. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 2013; 41 (7): 1411–27. DOI: 10.1007/s10439-012-0695-0
  7. Реброва О.Ю., Федяева В.К. Вопросник для оценки риска систематических ошибок в нерандомизированных сравнительных исследованиях: русскоязычная версия шкалы Ньюкасл-Оттава. Медицинские технологии. Оценка и выбор. 2016; 3 (25): 14–9.
  8. Gregg S., Li T., Hétu M., Pang S., Ewart P., Johri A. Relationship between carotid artery atherosclerosis and bulb geometry. Int. J. Cardiovasc. Imag. 2018; 34 (7): 1081–90. DOI: 10.1007/s10554-018-1319-z
  9. Strecker C., Krafft A., Kaufhold L., Hüllebrandt M., Weber S., Laudig U. et al. Carotid geometry is an independent predictor of wall thickness – a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J. Cardiovasc. Magn. Res. 2020; 22 (1). DOI: 10.1186/s12968-020-00657-5
  10. Yiyao C., Lv X., Wang F., Kong J., Zhaj H., Ye Z. et al. Geometry of the carotid artery and its association with pathologic changes in a Chinese population. Front. Physiol. 2020; 10. DOI: 10.3389/fphys.2019.01628
  11. Kamenskiy A., MacTaggart J., Pipinos I., Bikhchandani J., Dzenis Y. Three-dimensional geometry of the human carotid artery. J. Biomech. Engin. 2012; 134 (6). DOI: 10.1115/1.4006810
  12. Kamenskiy A., Pipinos I., Carson J., Mactaggart J., Baxter B. Age and disease-related geometric and structural remodeling of the carotid artery. J. Vasc. Surg. 2015; 62 (6): 1521. DOI: 10.1016/j.jvs.2014.10.041
  13. Phan T., Beare R., Jolley D., Das G., Ren M., Wong K. et al. Carotid artery anatomy and geometry as risk factors for carotid atherosclerotic disease. Stroke. 2012; 43 (6): 1596–601. DOI: 10.1161/STROKEAHA.111.645499
  14. Huang X., Yin X., Xu Y., Jia X., Li J., Niu P. et al. Morphometric and hemodynamic analysis of atherosclerotic progression in human carotid artery bifurcations. Am. J. Physiol. Heart Circ. Physiol. 2016; 310: 639–47. DOI: 10.1152/ajpheart.00464.2015
  15. Zajac H., Lachowski K., Lis A., Kr˛ecicki1 T., Garcarek J., Guzinski M. et al. The anatomical relation of the extracranial internal carotid artery in the parapharyngeal space. Adv. Clin. Exp. Med. 2019; 28 (5): 601–7. DOI: 10.17219/acem/78350
  16. Jitpun E., Wattanasen Y., Tirakotai W. Do asians have higher carotid bifurcation? A computed tomographic angiogram study of the common carotid artery bifurcation and external carotid artery branching patterns. Asian J. Neurosurg. 2019; 14 (4): 1082. DOI: 10.4103/ajns.AJNS_162_19
  17. Bijari P., Wasserman B., Steinman D. Carotid bifurcation geometry is an independent predictor of early wall thickening at the carotid bulb. Stroke. 2014; 45 (2): 473–8. DOI: 10.1161/STROKEAHA.113.003454
  18. Saho T., Onishi H. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study. Radiol. Phys. Technol. 2016; 9 (2): 277–85. DOI: 10.1007/s12194-016-0360-7
  19. Jiang P., Chen Z., Hippe D., Watase H., Sun B., Lin R. et al. Association between carotid bifurcation geometry and atherosclerotic plaque vulnerability: a chinese atherosclerosis risk evaluation study. Arterioscl. Thromb. Vasc. Biol. 2020; 40: 1383–91. DOI: 10.1161/ATVBAHA.119.313830
  20. Jeon S., Kwak H., Chung G. Widening and rotation of carotid artery with age: geometric approach. J. Stroke Cerebrovasc. Dis. 2018; 27 (4): 865–70. DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.026
  21. Ngo M., Kwak H., Ho C., Koh E. Longitudinal study of carotid artery bifurcation geometry using magnetic resonance angiography. Vascular. 2019. DOI: 10.1177/1708538118817666
  22. Yao X., Dai Z., Zhang X., Gao J., Xu G., Cai Y. et al. Carotid geometry as a predictor of in-stent neointimal hyperplasia: a computational fluid dynamics study. Circ. J. 2019; 83 (7): 1472–9. DOI: 10.1253/circj.CJ-18-1152
  23. Kurkcuoglu A., Aytekin C., Oktem H., Pelin C. Morphological variation of carotid artery bifurcation level in digital angiography. Folia Morphol. (Poland). 2015; 74 (2): 206–11. DOI: 10.5603/FM.2015.0032
  24. Arumugam S., Subbiah N. A cadaveric study on the course of the cervical segment of the internal carotid artery and its variations. Cureus. 2020; 12 (4): е7663. DOI: 10.7759/cureus.7663
  25. Cobiella R., Quinones S., Konschake M., Aragones P., Leon X., Vazquez Т. et al. The carotid axis revisited. Sci. Rep. 2021; 11 (1): 13847. DOI: 10.1038/s41598-021- 93397-0
  26. Uslu B., Cakmak Y., Sehirli Ü., Keskinoz E., Cosgun E., Arbak S. et al. Early onset of atherosclerosis of the carotid bifurcation in newborn cadavers. J. Clin. Diagn. Res. 2016; 10 (5): АС01–5.
  27. De Syo D., Franjic B., Lovricevic I., Vukelic M., Palenkic H. Carotid bifurcation position and branching angle in patients with atherosclerotic carotid disease. Coll. Antropol. 2005; 29 (2): 627–32.
  28. Шумилина М.В., Аракелян В.С., Дарвиш Н.А. Алгоритм ультразвукового обследования брахиоцефальных сосудов: Методические рекомендации. М.: НМИЦ ССХ им. А.Н. Бакулева; 2019.
  29. Tan Q., Qin C., Yang J., Wang T., Lin C., Lin C. et al. Inner diameters of the normal carotid arteries measured using three-dimensional digital subtraction catheter angiography: a retrospective analysis. BMC Neurol. 2021; 21 (1).
****
  1. Pahwa R., Jialal I. Atherosclerosis. StatPearls Publishing; 2021.
  2. Phrommintikul A., Krittayaphong R., Wongcharoen W., Yamwong S., Boonyaratavej S., Kunjara-Na-Ayudhya R. et al. Management of atherosclerosis risk factors for patients at high cardiovascular risk in real-world practice: a multicentre study. Sing. Med. J. 2017; 58 (9): 535–42.
  3. Zaromytidou M., Siasos G., Coskun A., Lucier M., Antoniadis A., Papafaklis M. et al. Intravascular hemodynamics and coronary artery disease: new insights and clinical implications. Hellenic J. Cardiol. 2016; 57 (6): 389–400. DOI: 10.1016/j.hjc.2016.11.019
  4. Cibis M., Potters W., Selwaness M., Gijsen F., Franco O., Arias Lorza A. et al. Relation between wall shear stress and carotid artery wall thickening MRI versus CFD. J. Biomech. 2016; 49 (5): 735–41. DOI: 10.1016/j. jbiomech.2016.02.004
  5. Malek A., Alper S., Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999; 282 (21): 2035–42. DOI: 10.1001/jama.282.21.2035
  6. Dolan J., Kolega J., Meng H. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 2013; 41 (7): 1411–27. DOI: 10.1007/s10439-012-0695-0
  7. Rebrova О.Yu., Fedyaeva V.K. The questionnaire to assess the risk of systematic bias in non-randomized comparative studies: the Russian-language version of the Newcastle-Ottawa scale. Medical Technologies. Assessment and Choice. 2016; 3 (25): 14–9 (in Russ.).
  8. Gregg S., Li T., Hétu M., Pang S., Ewart P., Johri A. Relationship between carotid artery atherosclerosis and bulb geometry. Int. J. Cardiovasc. Imag. 2018; 34 (7): 1081–90. DOI: 10.1007/s10554-018-1319-z
  9. Strecker C., Krafft A., Kaufhold L., Hüllebrandt M., Weber S., Laudig U. et al. Carotid geometry is an independent predictor of wall thickness – a 3D cardiovascular magnetic resonance study in patients with high cardiovascular risk. J. Cardiovasc. Magn. Res. 2020; 22 (1). DOI: 10.1186/s12968-020-00657-5
  10. Yiyao C., Lv X., Wang F., Kong J., Zhaj H., Ye Z. et al. Geometry of the carotid artery and its association with pathologic changes in a Chinese population. Front. Physiol. 2020; 10. DOI: 10.3389/fphys.2019.01628
  11. Kamenskiy A., MacTaggart J., Pipinos I., Bikhchandani J., Dzenis Y. Three-dimensional geometry of the human carotid artery. J. Biomech. Engin. 2012; 134 (6). DOI: 10.1115/1.4006810
  12. Kamenskiy A., Pipinos I., Carson J., Mactaggart J., Baxter B. Age and disease-related geometric and structural remodeling of the carotid artery. J. Vasc. Surg. 2015; 62 (6): 1521. DOI: 10.1016/j.jvs.2014.10.041
  13. Phan T., Beare R., Jolley D., Das G., Ren M., Wong K. et al. Carotid artery anatomy and geometry as risk factors for carotid atherosclerotic disease. Stroke. 2012; 43 (6): 1596–601. DOI: 10.1161/STROKEAHA.111.645499
  14. Huang X., Yin X., Xu Y., Jia X., Li J., Niu P. et al. Morphometric and hemodynamic analysis of atherosclerotic progression in human carotid artery bifurcations. Am. J. Physiol. Heart Circ. Physiol. 2016; 310: 639–47. DOI: 10.1152/ajpheart.00464.2015
  15. Zajac H., Lachowski K., Lis A., Kr˛ecicki1 T., Garcarek J., Guzinski M. et al. The anatomical relation of the extracranial internal carotid artery in the parapharyngeal space. Adv. Clin. Exp. Med. 2019; 28 (5): 601–7. DOI: 10.17219/acem/78350
  16. Jitpun E., Wattanasen Y., Tirakotai W. Do asians have higher carotid bifurcation? A computed tomographic angiogram study of the common carotid artery bifurcation and external carotid artery branching patterns. Asian J. Neurosurg. 2019; 14 (4): 1082. DOI: 10.4103/ajns.AJNS_162_19
  17. Bijari P., Wasserman B., Steinman D. Carotid bifurcation geometry is an independent predictor of early wall thickening at the carotid bulb. Stroke. 2014; 45 (2): 473–8. DOI: 10.1161/STROKEAHA.113.003454
  18. Saho T., Onishi H. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study. Radiol. Phys. Technol. 2016; 9 (2): 277–85. DOI: 10.1007/s12194-016-0360-7
  19. Jiang P., Chen Z., Hippe D., Watase H., Sun B., Lin R. et al. Association between carotid bifurcation geometry and atherosclerotic plaque vulnerability: a chinese atherosclerosis risk evaluation study. Arterioscl. Thromb. Vasc. Biol. 2020; 40: 1383–91. DOI: 10.1161/ATVBAHA.119.313830
  20. Jeon S., Kwak H., Chung G. Widening and rotation of carotid artery with age: geometric approach. J. Stroke Cerebrovasc. Dis. 2018; 27 (4): 865–70. DOI: 10.1016/j.jstrokecerebrovasdis.2017.10.026
  21. Ngo M., Kwak H., Ho C., Koh E. Longitudinal study of carotid artery bifurcation geometry using magnetic resonance angiography. Vascular. 2019. DOI: 10.1177/1708538118817666
  22. Yao X., Dai Z., Zhang X., Gao J., Xu G., Cai Y. et al. Carotid geometry as a predictor of in-stent neointimal hyperplasia: a computational fluid dynamics study. Circ. J. 2019; 83 (7): 1472–9. DOI: 10.1253/circj.CJ-18-1152
  23. Kurkcuoglu A., Aytekin C., Oktem H., Pelin C. Morphological variation of carotid artery bifurcation level in digital angiography. Folia Morphol. (Poland). 2015; 74 (2): 206–11. DOI: 10.5603/FM.2015.0032
  24. Arumugam S., Subbiah N. A cadaveric study on the course of the cervical segment of the internal carotid artery and its variations. Cureus. 2020; 12 (4): е7663. DOI: 10.7759/cureus.7663
  25. Cobiella R., Quinones S., Konschake M., Aragones P., Leon X., Vazquez Т. et al. The carotid axis revisited. Sci. Rep. 2021; 11 (1): 13847. DOI: 10.1038/s41598-021- 93397-0
  26. Uslu B., Cakmak Y., Sehirli Ü., Keskinoz E., Cosgun E., Arbak S. et al. Early onset of atherosclerosis of the carotid bifurcation in newborn cadavers. J. Clin. Diagn. Res. 2016; 10 (5): АС01–5.
  27. De Syo D., Franjic B., Lovricevic I., Vukelic M., Palenkic H. Carotid bifurcation position and branching angle in patients with atherosclerotic carotid disease. Coll. Antropol. 2005; 29 (2): 627–32.
  28. Shumilina M.V., Arakelyan V.S., Darvish N.A. Algorithm of ultrasound examination of brachiocephalic vessels: Methodical recommendations. Moscow; 2019 (in Russ.).
  29. Tan Q., Qin C., Yang J., Wang T., Lin C., Lin C. et al. Inner diameters of the normal carotid arteries measured using three-dimensional digital subtraction catheter angiography: a retrospective analysis. BMC Neurol. 2021; 21 (1).

About Authors

  • Viktoriya P. Derbilova, Postgraduate; ORCID
  • Roman A. Vinogradov, Dr. Med. Sci., Head of Department of Vascular Surgery; ORCID
  • Tat’yana I. Kapran, Cardiovascular Surgeon; ORCID
  • Yuriy N. Zakharov, Dr. Phys. Math. Sci., Head of Laboratory; ORCID
  • Vladimir G. Borisov, Cand. Phys. Math. Sci., Senior Researcher; ORCID
  • El’vira R. Vinogradova, Student; ORCID
  • Pavel V. Sukhoruchkin, Cardiovascular Surgeon; ORCID
  • Aleksandr G. Baryshev, Dr. Med. Sci., Deputy Chief Physician; ORCID

 If you found mistakes, select text and press Alt+A