Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Development and comparative evaluation of local hemostatic coatings basedon natural polymers in an experiment on animals

Authors: V.А. Kaba k1, G.G. Belozerskaya 1, A.P. Momot 2, D.Yu. Bychichko 1, А.R. Lempert 1, О.E. Nevedrova 1, L.S. Malykhina 1, Yu.S. Logvinova 1, Е.M. Golubev 1, Т.I. Shirokova 1, L.V. Akopyan 3

Company:
1 National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Novyy Zykovskiy proezd, 4, Moscow, 125167, Russian Federation
2 Altai Branch of the National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, ul. Lyapidevskogo, 1, Barnaul, 656024, Russian Federation
3 A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, ul. Delegatskaya, 20, stroenie 1, Moscow, 127473, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2019-16-1-67-75

UDC: 615.46:577.1:616-093.9

Link: Clinical Physiology of Blood Circulaiton. 2019; 16 (1): 67-75

Quote as: Kabak V.A., Belozerskaya G.G., Momot A.P., Bychichko D.Yu., Lempert A.R., Nevedrova O.E., Malykhina L.S., Logvinova Yu.S., Golubev E.M., Shirokova T.I., Akopyan L.V. Development and comparative evaluation of local hemostatic coatings based on natural polymers in an experiment on animals. Clinical Physiology of Circulation. 2019; 16 (1): 67–75 (in Russ.). DOI: 10.24022/1814-6910-2019-16-1-67-75

Received / Accepted:  30.07.2018/16.10.2018

Full text:  

Abstract

Objective. Development of new local hemostatic dressings based on bacterial nanocellulose.

Material and methods. The influence of the technological parameters of sublimation drying on the structure of new dressings in the form of a sponge based on nanocellulose was studied. An experimental comparative study of the hemostatic activity of dressing samples in the form of a sponge obtained by new technological method was carried out. In experiments on rabbits, the hemostatic activity samples of dressings in the form of sponge was determined, measuring the stopping time of bleeding and the mass of blood loss. The dependence of the hemostatic activity on the thickness of samples of dressings in the form of sponge was studied. A comparative evaluation of the hemostatic activity of dressings in the form of a sponge made at the National Medical Research Center for Hematology on the basis of sodium alginate, kappa-carrageenan and bacterial nanocellulose with foreign medicines was carried out.

Results. The analysis of the obtained data has allowed us to choose a single technological process for obtaining new dressings based on bacterial nanocellulose in the form of a sponge. The high hemostatic activity of local dressings in the form of a sponge made on the basis of nanocellulose has been experimentally established. A direct relationship between local hemostatic activity and thickness of the hemostatic dressings in the form of a sponge has been revealed. An evaluation of the hemostatic activity of dressings in the form of a sponge based on sodium alginate, kappa-carrageenan and bacterial nanocellulose with foreign medicines a high hemostatic properties of the domestic dressings has revealed.

Conclusion. The developed dressings based on bacterial nanocellulose, sodium alginate and kappa-carrageenan has high hemostatic activity on a par with foreign hemostatic medicines. At the same time, the effectiveness of their application depended on the parameters of the freezing, freeze-drying process and the thickness of the sample. Correct selection of these parameters will allow to create a series of preparations based on bacterial nanocellulose in order to stop local bleeding.

References

  1. Абзаева К.А., Жилицкая Л.В., Белозерская Г.Г., Островская Л.А. Влияние природы металла на гемостатическую активность водорастворимых нанокомпозитов серебра и золота. Известия Академии наук. Серия химическая. 2017; 12: 2314–6.
  2. Абзаева К.А., Зеленков Л.Е. Cовременные локальные гемостатики и уникальные представители их нового поколения. Известия Академии наук. Серия химическая. 2015; 6: 233–9.
  3. Bennett B.L. Bleeding control using hemostatic dressings: lessons learned. Wilderness Environ. Med. 2017; 28 (2S): S39–49. DOI: 10.1016/j.wem.2016.12.005
  4. Annabi N., Tamayol A., Shin S.R., Ghaemmaghami A.M., Peppas N.A., Khademhosseini A. Surgical materials: current challenges and nano-enabled solutions. Nano Today. 2014; 9 (5): 574–89. DOI: 10.1016/j.nantod.2014.09.006
  5. Overbey D.M., Jones E.L., Robinson T.N. How hemostatic agents interact with the coagulation cascade. AORN J. 2014; 100 (2): 148–59. DOI: 10.1016/j.aorn.2013.12.012
  6. Таркова А.Р., Чернявский А.М., Морозов С.В., Григорьев И.А., Ткачева Н.И., Родионов В.И. Гемостатический материал местного действия на основе окисленной целлюлозы. Сибирский научный медицинский журнал. 2015; 35 (2): 11–5.
  7. Медушева Е.О., Филатов В.Н., Филатов Н.В., Бобрышев Д.В., Бейер Э.В. Оценка безопасности биодеградируемого гемостатического лекарственного средства. Разработка и регистрация лекарственных средств. 2015; 11 (11): 212–8.
  8. Медушева Е.О., Филатов В.Н., Рыльцев В.В., Белов А.А., Кулагина А.С., Рудакова И.П. и др. Производные диальдегидцеллюлозы, модифицированные биологически активными веществами. Фармация. 2016; 1: 52–6.
  9. Picheth G.F., Pirich C.L., Sierakowski M.R., Woehl M.A., Sakakibara C.N., de Souza C.F. et al. Bacterial cellulose in biomedical applications: a review. Int. J. Biol. Macromol. 2017; 104: 97–106. DOI: 10.1016/j.ijbiomac.2017.05.171
  10. Di Lena F. Hemostatic polymers: the concept, state of the art and perspectives. J. Mater. Chem. B. 2014; 2 (23): 3567–77. DOI: 10.1039/C3TB21739F
  11. Волков В.А. Коллоидная химия. Поверхностные явления и дисперсные системы. СПб: Издательство Лань; 2015.
  12. Zhang H., Lv X., Zhang X., Wang H., Deng H., Li Y. et al. Antibacterial and hemostatic performance of chitosan – organic rectorite/alginate composite sponge. RSC Adv. 2015; 5 (62): 50523–31. DOI: 10.1039/C5RA08569A
  13. Сакович Г.В., Скиба Е.А., Будаева В.В., Гладышева Е.К., Алешина Л.А. Технологические основы получения бактериальной наноцеллюлозы из сырья с нулевой себестоимостью. Доклады Академии наук. 2017; 477 (1): 109–12.
  14. Миронов А.Н. (ред.). Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К; 2012.
  15. Абакумов М.М., Ложкин А.В., Хватов В.Б. Оценка объема и степени кровопотери при травме груди и живота. Хирургия. Журнал им. Н.И. Пирогова. 2002; 11: 4–7.

About Authors

  • Valeriy A. Kabak, Manager of Laboratory of Pathology and Pharmacology of a Hemostasis; orcid.org/0000-0002-3851-7510
  • Galina G. Belozerskaya, Dr. Med. Sc., Head of Laboratory of Pathology and Pharmacology of Hemostasis; orcid.org/0000-0001-8620-153X
  • Andrey P. Momot, Dr. Med. Sc., Professor, Director; orcid.org/0000-0002-8413-5484
  • Dmitriy Yu. Bychichko, Junior Researcher, Doctor-Biochemist; orcid.org/0000-0003-1585-4415
  • Asaf R. Lempert, Postgraduate, Trainee-Researcher; orcid.org/0000-0002-6576-5712
  • Ol'ga E. Nevedrova, Cand. Biol. Sc., Senior Researcher; orcid.org/0000-0001-9752-6647
  • Larisa S. Malykhina, Cand. Biol. Sc., Senior Researcher; orcid.org/0000-0002-6231-0069
  • Yuliya S. Logvinova, Cand. Med. Sc., Researcher, Doctor-Biochemist; orcid.org/0000-0002-8392-1790
  • Evgeniy M. Golubev, Head of Experimental and Production Department of Deep Processing of Plasma; orcid.org/0000-0002-5405-8270
  • Tat'yana I. Shirokova, Deputy Head of Experimental and Production Department of Deep Processing of Plasma; orcid.org/0000-0002-2543-8071
  • Lyudmila V. Akopyan, Cand. Med. Sc., Assistant of Chair of Otorhinolaryngology; orcid.org/ 0000-0002-4328-0001

 If you found mistakes, select text and press Alt+A