Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery

The effect of physical exertion on endothelial adaptation under conditions of pathophysiological changes in the cardiovascular system

Authors: T.T. Kakuchaya, T.G. Dzhitava, A.G. Filatova, A.M. Кuular, Z.K. Tokaeva, N.E. Zakaraya

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/0.24022/1814-6910-2020-17-3-165-171

UDC: 616.1:615.82

Link: Clinical Physiology of Blood Circulaiton. 2020; 17 (3): 165-171

Quote as: Kakuchaya T.T., Dzhitava T.G., Filatova A.G., Кuular A.M., Tokaeva Z.K., Zakaraya N.E. The effect of physical exertion on endothelial adaptation under conditions of pathophysiological changes in the cardiovascular system. Clinical Physiology of Circulation. 2020; 17 (3): 165–71 (in Russ.). DOI: 10.24022/1814-6910-2020-17-3-165-171

Received / Accepted:  09.06.2020/15.06.2020

Full text:
Subscribe 🔒

Abstract

The endothelial layer is a key link in maintaining homeostasis, regulating the tone and structure of the vascular wall. It is endotheliocytes that play an important role in the regulation of water and macromolecular transport, adhesion and transmigration of leukocytes, the generation and metabolism of biochemical substances, changes in the functional component and proliferation of smooth muscle cells, as well as vascular remodelling under the action of vasoactive agents. Endothelial dysfunction is mainly characterized by changes in the endothelial response to irritation, including a decrease in vasodilation activity and the induction of a pro-inflammatory or prothrombotic state of the vascular wall. A number of studies have shown that regular exercise improves endothelium-dependent adaptive vascular function. These factors significantly contribute to the improvement of endothelial function and thereby reduce neurohumoral activity, which leads to an increase in peripheral perfusion and a decrease in the additional load on the heart.

References

  1. Cines D.B., Pollak E.S., Buck C.A., Loscalzo J., Zimmerman G.A., McEver R.P. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998; 91: 3527–61. PMID: 9572988 
  2. Phillips S.A., Andaku D.K., Mendes R.G., Caruso F.R., Cabiddu R., Jaenisch R.B. et al. Exploring vascular function biomarkers: implications for rehabilitation. Braz. J. Cardiovasc. Surg. 2017; 32 (2): 125–35. DOI: 10.21470/1678-9741-2016-0085 
  3. Chien S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 2008; 36: 554–62. DOI: 10.1007/ s10439-007-9426-3
  4. Kapellos T.S., Bonaguro L., Gemünd I., Reusch N., Saglam A., Hinkley E.R. et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front. Immunol. 2019; 10: 2035. DOI: 10.3389/ fimmu.2019.02035 
  5. Chatterjee S. Endothelial mechanotransduction, redox signaling and the regulation of vascular inflammatory pathways. Front. Physiol. 2018; 9. DOI: 10.3389/fphys. 2018.00524 
  6. Battson M.L., Lee D.M., Gentile C.L. Endoplasmic reticulum stress and the development of endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2017; 312: H355–67. DOI: 10.1152/ajpheart.00437.2016 
  7. Rowell L.B. Ideas about control of skeletal and cardiac muscle blood flow (1876–2003): cycles of revision and new vision. J. Appl. Physiol. 2004; 97 (1): 384–92. DOI: 10.1152/japplphysiol.01220.2003 
  8. Joyner M.J., Casey D.P. Regulation of increased blood flow(hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol. Rev. 2015; 95 (2): 549–601. DOI: 10.1152/physrev.00035.2013
  9. Mota M.M., Silva T.L.T.B., Macedo F.N., Mesquita T.R.R., Quintans L.J.J., Santana-Filho V.J. et al. Effects of a single bout of resistance exercise in different volumes on endothelium adaptations in healthy animals. Arq. Bras. Cardiol. 2017; 108 (5): 436–42. DOI: 10.5935/abc.20170060 
  10. Florian J.A., Kosky J.R., Ainslie K., Pang Z., Dull R.O., Tarbell J.M. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 2003; 93 (10): e136–42. DOI: 10.1161/01.RES.0000101744.47866.D5 
  11. Goto C., Higashi Y., Kimura M., Noma K., Hara K., Nakagawa K. et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003; 108 (5): 530–5. DOI: 10.1161/01.CIR.0000080893.55729.28 
  12. Spence A.L., Carter H.H., Naylor L.H., Green D.J. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit arteryadaptation in humans. J. Physiol.2013; 591 (Pt 5): 1265–75. DOI: 10.1113/jphysiol.2012.247387 
  13. Currens J.H., White P.D. Half a Century of Running. New Engl. J. Med. 1961; 265 (20): 988–93. DOI: 10.1056/ nejm196111162652006 
  14. Hirai D.M., Copp S.W., Ferguson S.K., Holdsworth C.T., Hageman K.S., Poole D.C. et al. Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Nitric Oxide. 2018; 74: 1–9. DOI: 10.1016/ j.niox.2017.12.008 
  15. McCormick M.E., Manduchi E., Witschey W.R.T., Gorman R.C., Gorman J.H., Jiang Y.-Z. et al. Spatial phenotyping of the endocardial endothelium as a function of intracardiac hemodynamic shear stress. J. Biomech. 2017; 50: 11–9. DOI: 10.1016/j.jbiomech.2016.11.018 
  16.  Divakaran S., Loscalzo J. The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. J. Am. Coll. Cardiol. 2017; 70 (19): 2393–410. DOI: 10.1016/j.jacc.2017.09.1064 
  17. Siasos G., Sara J.D., Zaromytidou M., Park K.H., Coskun A.U., Lerman L.O. et al. Local low shear stress and endothelial dysfunction in patients with nonobstructive coronary atherosclerosis. J. Am. Coll. Cardiol. 2018; 71 (19): 2092–102. DOI: 10.1016/j.jacc.2018. 02.073 
  18. Huveneers S., Daemen M.J., Hordijk P.L. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ. Res. 2015; 116 (5): 895–908. DOI: 10.1161/CIRCRESAHA.116.305720 
  19. Joyner M.J., Green D.J. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J. Physiol. 2009; 587 (Pt 23): 5551–8. DOI: 10.1113/ jphysiol.2009.179432 
  20. Bibli S.-I., Hu J., Sigala F., Wittig I., Heidler J., Zukunft S. et al. Cystathionine γ lyase sulfhydrates the RNA binding protein HuR to preserve endothelial cell function and delay atherogenesis. Circulation. CIRCULATIONAHA. 2018; 118: 034757. DOI: 10.1161/ circulationaha.118.034757 
  21. Blair S.N., Morris J.N. Healthy hearts and the universal benefits of being physically active: physical activity and health. Ann. Epidemiol. 2009; 19 (4): 253–6. DOI: 10.1016/j.annepidem.2009.01.019 
  22. Nytrøen K., Rolid K., Andreassen A.K., Yardley M., Gude E., Dahle D.O. Have dall C effect of high-intensity interval training in de novo heart transplant recipients in Scandinavia: one-year follow-up of the HITTS randomized, controlled study. Circulation.2019; 139: 2198–211. DOI: 10.1161/CIRCULATIONAHA.118.036747 
  23. Mora S., Cook N., Buring J.E., Ridker P.M., Lee I.-M. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007; 116 (19): 2110–18. DOI: 10.1161/circulationaha. 107.729939 
  24. Ashor A.W., Lara J., Siervo M., Celis-Morales C., Oggioni C., Jakovljevic D.G. et al. Exercise modalities and endothelial function: a systematic review and doseresponse meta-analysis of randomized controlled trials. Sports Medicine. 2014; 45 (2): 279–96. DOI: 10.1007/ s40279-014-0272-9 
  25. Hannan A.L., Hing W., Simas V., Climstein M., Coombes J.S., Jayasinghe R. et al. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. Open. Access. J. Sports Med. 2018; 9: 1–17. DOI: 10.2147/OAJSM.S150596 
  26. Ghardashi A.A., Izadi M.R., Rakhshan K., Mafi F., Biglari S., Gandomkar B.H. Improved brachial artery shear patterns and increased flow-mediated dilatation after low-volume high-intensity interval training in type 2 diabetes. Exp. Physiol. 2018; 103 (9): 1264–76. DOI: 10.1113/EP087005 
  27. Green D.J., Hopkins N.D., Jones H., Thijssen D.H.J., Eijsvogels T.M.H., Yeap B.B. Sex differences in vascular endothelial function and health in humans: impacts of exercise. Exp. Physiol. 2016; 101 (2): 230–42. DOI: 10.1113/ep085367 
  28. Sun H.-J., Wu Z.-Y., Nie X.-W., Bian J.-S. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front. Pharmacol. 2020; 10. DOI: 10.3389/fphar.2019.01568 
  29. Cardillo C., Kilcoyne C.M., Cannon R.O., Panza J.A. Impairment of the nitric oxide-mediated vasodilator response to mental stress in hypertensive but not in hypercholesterolemic patients. J. Am. Coll. Cardiol. 1998; 32 (5): 1207–13. DOI: 10.1016/s0735-1097(98) 00391-x 
  30. Schiffrin E.L. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension. Clin. Invest. Med. 2015; 38: E394–E402. DOI: 10.25011/cim.v38i6.26202 
  31. Perticone F., Ceravolo R., Pujia A., Ventura G., Iacopino S., Scozzafava A. et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation. 2001; 104 (2): 191–6. DOI: 10.1161/01.cir.104.2.191 
  32. Andersson C., Quiroz R., Enserro D., Larson M.G., Hamburg N.M., Vita J.A. et al. Association of parental hypertension with arterial stiffness in nonhypertensive offspring. Hypertension. 2016; 68 (3): 584–9. DOI: 10.1161/ hypertensionaha.116.07426 
  33. Siasos G., Athanasiou D., Terzis G., Stasinaki A., Oikonomou E., Tsitkanou S. et al. Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness. Eur. J. Prev. Cardiol.2016; 23 (14): 1565–72. DOI: 10.1177/2047487316647185 
  34. Daiber A., Di Lisa F., Oelze M., Kröller-Schön S., Steven S., Schulz E. et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br. J. Pharmacol. 2016; 174 (12): 1670–89. DOI: 10.1111/ bph.13403 
  35. Green D.J., Maiorana A., O'Driscoll G., Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J. Physiol. 2004; 561 (1): 1–25. DOI: 10.1113/jphysiol.2004.068197 
  36. Halliwill J.R., Buck T.M., Lacewell A.N., Romero S.A. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp. Physiol. 2012; 98 (1): 7–18. DOI: 10.1113/expphysiol. 2011.058065 
  37. Higashi Y., Sasaki S., Kurisu S., Yoshimizu A., Sasaki N., Matsuura H. et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999; 100 (11): 1194–202. DOI: 10.1161/01.cir.100.11.1194 
  38. Laterza M.C., de Matos L.D.N.J., Trombetta I.C., Braga A.M.W., Roveda F., Alves M.J.N.N. et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007; 49 (6): 1298–306. DOI: 10.1161/HYPERTENSIONAHA.106. 085548 
  39. Saghiv M.S., Sira D.B., Goldhammer E., Sagiv M. The effects of aerobic and anaerobic exercises on circulating soluble-Klotho and IGF-I in young and elderly adults and in CAD patients. J. Circ. Biomark. 2017; 6 (1). DOI: 10.1177/1849454417733388 
  40. Lopes S., Mesquita-Bastos J., Alves A.J., Ribeiro F. Exercise as a tool for hypertension and resistant hypertension management: current insights. Integr. Blood Pres. Control.2018; 11: 65–71. DOI: 10.2147/IBPC.S136028 
  41. Keese F., Farinatti P., Pescatello L., Monteiro W. A comparison of the immediate effects of resistance, aerobic, and concurrent exercise on postexercise hypotension. J. Str. Cond. Res. 2011; 25 (5): 1429–36. DOI: 10.1519/JSC.0b013e3181d6d968 
  42. Kodama S., Tanaka S., Saito K., Shu M., Sone Y., Onitake F. et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol. Arch. Int. Med. 2007; 167 (10): 999. DOI: 10.1001/ archinte.167.10.999 
  43. Albarrati A.M., Alghamdi M.S.M., Nazer R.I., Alkorashy M.M., Alshowier N., Gale N. Effectiveness of low to moderate physical exercise training on the level of low-density lipoproteins: a systematic review. BioMed. Res. Int.2018; 2018: 1–16. DOI: 10.1155/2018/5982980 
  44.  Le Master E., Levitan I. Endothelial stiffening in dyslipidemia. Aging.2019; 11 (2): 299–300. DOI: 10.18632/ aging.101778 
  45. KrausW.E., Houmard J.A., Duscha B.D., Knetzger K.J., Wharton M.B., McCartney J.S. et al. Effects of the amountand intensity of exercise on plasma lipoproteins. NewEngl. J.Med.2002; 347 (19): 1483–92. DOI: 10.1056/ nejmoa020194 
  46. Tanasescu M., Leitzmann M.F., Rimm E.B., Frank B.Hu. Physical activity in relation to cardiovascular disease and total mortality among men with type 2 diabetes. Circulation. 2003; 107 (19): 2435–9. DOI: 10.1161/ 01.cir.0000066906.11109.1f 
  47. YangJ., Zheng X., Mahdi A., Zhou Z., Tratsiakovich Y., Jiao T. et al. Red blood cells in type 2 diabetes impair cardiac post-ischemic recovery through an arginasedependent modulation of nitric oxide synthase and reactive oxygen species. JACC Bas. Transl. Sci. 2018; 3: 450–63. DOI: 10.1016/j.jacbts.2018.03.006 
  48. Gibala M.J., Little J.P., MacDonald M.J., Hawley J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol.2012; 590 (5): 1077–84. DOI: 10.1113/jphysiol.2011.224725 
  49. Tjonna A.E., Lee S.J., Rognmo O., Stolen T.O., Bye A., Haram P.M. et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008; 118 (4): 346–54. DOI: 10.1161/circulationaha.108.772822 
  50. Rognmo O., Moholdt T., Bakken H., Hole T., Molstad P., Myhr N.E. et al. Cardiovascular risk of high-versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation. 2012; 126 (12): 1436–40. DOI: 10.1161/circulationaha.112.123117

About Authors

  • Tea T. Kakuchaya, Dr. Med. Sc., Professor, Head of Department of Cardiosurgical Treatment and Rehabilitation of Adult Patients with Heart Pathology; orcid.org/0000-0001-9383-2073 
  • Tamara G. Dzhitava, Cand. Med. Sc., Deputy Head of Department of Cardiosurgical Treatment and Rehabilitation of Adult Patients with Heart Pathology; orcid.org/0000-0002-6141-2231 
  • Angelina G. Filatova, Cardiologist; orcid.org/0000-0001-5070-2447 
  • Arzhana M. Kuular, Cand. Med. Sc., Cardiologist; orcid.org/0000-0002-2133-9674 
  • Zarina K. Tokaeva, Cardiologist, Postgraduate; orcid.org/0000-0002-8852-8197 
  • Nino E. Zakaraya, Junior Researcher; orcid.org/0000-0002-7604-5278

 If you found mistakes, select text and press Alt+A