Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


The role of transit time flowmetry in assessing coronary anastomoses

Authors: Z.D. Shoniya, I.Yu. Sigaev

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2020-17-3-189-194

UDC: 612.1:616.13/.14-089

Link: Clinical Physiology of Blood Circulaiton. 2020; 17 (3): 189-194

Quote as: Shoniya Z.D., Sigaev I.Yu. The role of transit time flowmetry in assessing coronary anastomoses. Clinical Physiology of Circulation. 2020; 17 (3): 189–94 (in Russ.). DOI: 10.24022/1814-6910-2020-17-3-189-194

Received / Accepted:  06.05.2020/21.05.2020

Full text:  

Abstract

Today, transit time flowmetry is one of the simplest methods for assessing the control of coronary anastomoses performed during coronary artery bypass surgery. An important advantage of this method is the ability to perform it before closing the chest, which allows for the best outcomes of the operation. The presented review shows the place of transit time flowmetry among modern methods for assessing myocardial revascularization. The exact parameters for assessing blood flow by shunts are detailed, the possibilities and limitations of the method are described, and its role in deciding whether to revise the conduit. The review shows a way to increase the diagnostic accuracy of ultrasonic flowmetry and minimize surgical errors.

References

  1. Базылев В.В., Россейкин Е.В., Микуляк А.И., Карпунькин О.А. Ультразвуковая допплеровская флоуметрия в интраоперационной диагностике несостоятельности коронарных шунтов. Ангиология и сосудистая хирургия. 2014; 20 (1): 45–50. [Bazylev V.V., Rosseikin E.V., Mikulyak A.I., Karpunkin O.A. Ultrasonic doppler flowmetry in intraoperative diagnosis of coronary bypass graft incompetence. Angiology and Vascular Surgery.2014; 20 (1): 45–50 (in Russ.).] 
  2. Marco J.D., Barner H.B., Kaiser G.C., Codd J.E., Mudd J.G., Willman V. Operative flow measurements and coronary bypass graft patency. J. Thorac. Cardiovasc. Surg. 1976; 71 (4): 545–7. DOI: 10.1016/S00225223(19)40174-8 
  3. Foxworthy J.V., Monro J.L., Lewis B. The response to papaverine in coronary artery bypass graft flows. J. Cardiovasc. Surg. 1985; 26 (5): 439–42. 
  4. FarooqV., Serruys P.W., Garcia-Garcia H.M., Zhang Y., Bourantas C.V., Holmes D.R. et al. The negative impact of incomplete angiographic revascularization on clinical outcomes and its association with total occlusions: The SYNTAX (Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) trial. J. Am. Coll. Cardiol. 2013; 61: 282–94. DOI: 10.1016/ j.jacc.2012.10.017 
  5. Бокерия Л.А., Петросян К.В. Интраоперационный ангиографический контроль результатов выполнения операции аортокоронарного шунтирования. Сердечно-сосудистые заболевания. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2019; 20 (7–8): 610–20. DOI: 10.24022/1810-0694-2019-20-7-8-610-620 [Bockeria L.A., Petrosyan K.V. Intraoperative angiographic assessment of coronary artery bypass surgery results. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2019; 20 (7–8): 610–20 (in Russ.). DOI: 10.24022/1810-0694-2019-20-7-8-610-620] 
  6. Бокерия Л.А., Пурсанов М.Г., Петросян К.В., Соболев А.В., Вартанов П.В., Бокерия О.Л. и др. Интраоперационная шунтография: оптимальный метод оценки проходимости коронарных шунтов и дальнейшего улучшения результатов хирургической реваскуляризации миокарда. Грудная и сердечно-сосудистая хирургия. 2018; 60 (3): 233–41. DOI: 10.24022/0236-2791-2018-60-3-233-241 [Bockeria L.A., Pursanov M.G., Petrosyan K.V., Sobolev A.V., Vartanov P.V., Bockeria O.L. et al. Intraoperative bypass angiography: an optimal solution in determination of coronary bypass graft patience and improvement of long-term results of surgical myocardial revascularization. Russian Journal of Thoracic and Cardiovascular Surgery.2018; 60 (3): 233–41 (in Russ.). DOI: 10.24022/0236-2791-2018-60-3-233-241] 
  7. Бокерия Л.А., Петросян К.В., Бокерия О.Л., Соболев А.В., Донаканян С.А., Голубев Е.П. и др. Интраоперационная шунтография – четырехлетний опыт наблюдения. Анналы хирургии. 2019; 24 (2): 100–7. DOI: 10.24022/1560-9502-2019-24-2-100-107 [Bockeria L.A., Petrosyan K.V., Bockeria O.L., Sobolev A.V., Donakanyan S.A., Golubev E.P. et al. Intraoperative bypass angiography – four-year observation experience. Russian Annals of Surgery.2019; 24 (2): 100–7 (in Russ.). DOI: 10.24022/1560-9502-2019-242-100-107]
  8. Бокерия Л.А., Алекян Б.Г., Закарян Н.В., Стаферов А.В., Петросян К.В., Абросимов А.В. Интраоперационная шунтография как метод контроля непосредственных результатов операций коронарного шунтирования. Грудная и сердечно-сосудистая хирургия. 2010; 2: 4–10. [Bockeria L.A., Alekyan B.G., Zakaryan N.V., Staferov A.V., Petrosyan K.V., Abrosimov A.V. Intraoperative shuntography as a method of monitoring the immediate results of coronary bypass surgery. Russian Journal of Thoracic and Cardiovascular Surgery. 2010; 2: 4–10 (in Russ.).] 
  9. Рекомендации ESC/EACTS по реваскуляризации миокарда 2018. Российский кардиологический журнал.2019; 24 (8): 151–226. DOI: 10.15829/1560-40712019-8-151-226 [2018 ESC/EACTS guidelines on myocardial revascularization. Russian Journal of Cardiology. 2019; 24 (8): 151–226 (in Russ.). DOI: 10.15829/1560-4071-20198-151-226] 
  10. Toth G., De Bruyne B., Casselman F., De Vroey F., Pyxaras S., Di Serafino L. et al. Fractional flow reserveguided versus angiography-guided coronary artery bypass graft surgery. Circulation. 2013; 128: 1405–11. DOI: 10.1161/CIRCULATIONAHA.113.002740
  11. Botman C.J., Schonberger J., Koolen S., Penn O., Botman H., Dib N. et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann. Thorac. Surg. 2007; 83: 2093–7. DOI: 10.1016/j.athoracsur. 2007.01.027 
  12. ESC/EACTS Guidelines myocardial revascularization 2014. Eur. Heart J. 2014; 35: 3235–41. 
  13. Balacumaraswami L., Taggart D.P. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann. Thorac. Surg. 2007; 83: 2251–7. DOI: 10.1016/j.athoracsur.2006.12.025 
  14.  Guidelines on myocardial revascularization. Eur. Heart J. 2010; 31: 2501–55. 
  15. Lehnert P., Moller C.H., Damgaard S., Gerds T.A., Steinbruchel D.A. Transit-time flow measurement as a predictor of coronary bypass graft failure at one year angiographic follow-up. J. Card. Surg. 2015; 30: 47–52. DOI: 10.1111/jocs.12471 
  16. Handa T., Orihashi K., Nishimori H., Fukutomi T., Yamamoto M., Kondo N. et al. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transittime flow measurement predictor of graft failure following coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg. 2015; 20: 449–57. DOI: 10.1093/icvts/ ivu448 
  17. Walker P.F., Daniel W.T., Moss E., Thourani V.H., Kilgoc P., Liberman H.A. et al. The accuracy of transit time flow measurement in predicting graft patency after coronary artery bypass grafting. Innovations (Phila). 2013; 8: 416–9. DOI: 10.1097/IMI.0000000000000021 
  18. Gao G., Zheng Z., Pi Y., Lu B., Lu J., Hu S. Aspirin plus clopidogrel therapy increases early venous graft patency after coronary artery bypass surgery a single-center, randomized, controlled trial. J. Am. Coll. Сardiol. 2010; 56: 1639–43. DOI: 10.1016/j.jacc.2010. 03.104 
  19. Singh S.K., Desai N.D., Chikazawa G., Tsuneyoshi H., Vincent J., Zagorski B.M. et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J. Thorac. Cardiovasc. Surg. 2010; 139: 294–301. DOI: 10.1016/j.jtcvs.2009.09.048 
  20. БазылевВ.В., Немченко Е.В., Россейкин Е.В., Микуляк А.И. Флоуметрические и ангиографические предикторы окклюзии коронарных шунтов. Ангиология и сосудистая хирургия. 2018; 24 (2): 49–55. [Bazylev V.V., Nemchenko E.V., Rosseikin E.V., Mikulyak A.I. Flowmetric and angiographic predictors of occlusion of coronary bypass grafts. Angiology and Vascular Surgery. 2018; 24 (2): 49–55 (in Russ.).] 
  21. D'Ancona G., Karamanoukian H.L., Salerno T.A., Schmid S., Bergsland J. Flow measurement in coronary surgery. Heart Surg. Forum. 1999; 2 (2): 121–4. 
  22. Uehara M., Muraki S., Takagi N., Yanase Y., Tabuchi M., Tachibana K. et al. Evaluation of gastroepiploic arterial grafts to right coronary artery using transit-time flow measurement. Eur. J. Cardiothorac. Surg. 2015; 47: 459–63. DOI: 10.1093/ejcts/ezu229 
  23. Niclauss L. Techniques and standards in intraoperative graft verification by transit time flow measurement after coronary artery bypass graft surgery: a critical review. Eur. J. Cardiothorac. Surg. 2017; 51: 26–33. DOI: 10.1093/ ejcts/ezw203 
  24. Trachiotis G.D. Value of diastolic flow with transit-time flow meters in coronary artery bypass surgery. Eur. J. Cardiothorac. Surg. 2011; 39 (03): 431–2. DOI: 10.1016/ j.ejcts.2010.07.005 
  25. Une D., Deb S., Chikazawa G., Kommaraju K., Tsuneyoshi H., Karkhanis R. et al. Cut-off values for transit time flowmetry: are the revision criteria appropriate? J. Card. Surg. 2013; 28 (01): 3–7. DOI: 10.1111/ jocs.12036 26. D'Ancona G., Karamanoukian H.L., Ricci M., Schmid S., Bergsland J., Salerno T.A. Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 2000; 17 (3): 287–93. DOI: 10.1016/S1010-7940(00)00332-8
  26. Потеев М.А., Якубов Р.А. Интраоперационный менеджмент при коронарном шунтировании: фло уметрия как способ контроля качества. Практическая медицина. 2017; 4 (105): 15–20. [Poteev M.A., Yakubov R.A. Intraoperative management in coronary bypass surgery: transit time flow measurement as a means of quality control. Practical Medicine. 2017; 4 (105): 15–20 (in Russ.).] 
  27. Honda K., Okamura Y., Nishimura Y., Uchita S., Yuzaki M., Kaneko M. et al. Graft flow assessment using a transit time flow meter in fractional flow reserve-guided coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2015; 149: 1622–8. DOI: 10.1016/ j.jtcvs.2015.02.050 
  28. Desai N.D., Miwa S., Kodama D., Koyama T., Cohen G., Pelletier M.P. et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J. Thorac. Cardiovasc. Surg. 2006; 132 (03): 585–94. DOI: 10.1016/j.jtcvs. 2005.09.061 
  29. Shin H., Yozu R., Mitsumaru A., Iino Y., Hashizume K., Matayoshi T. et al. Intraoperative assessment of coronary artery bypass graft: transit-time flowmetry versus angiography. Ann. Thorac. Surg. 2001; 72 (05): 1562–5. DOI: 10.1016/s0003-4975(01)02981-2 
  30. D'Ancona G., Karamanoukian H., Ricci M., Salerno T.A., Bergsland J. (Eds.) Intraoperative graft patency verification in cardiac and vascular surgery. New York: Futura; 2001. 
  31. Takami Y., Takagi Y. Roles of transit-time flow measurement for coronary artery bypass surgery. Thorac. Cardiovasc. Surg. 2018; 66 (06): 426–33. DOI: 10.1055/ s-0037-1618575
  32. Di Giammarco G., Canosa C., Foschi M., Rabozzi R., Marinelli D., Masuyama S. et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding high-resolution epicardial ultrasonography to transit-time flow measurement. Eur. J. Cardiothorac. Surg. 2014; 45 (03): e41–e45. DOI: 10.1093/ ejcts/ezt580 
  33. SchillerW., Heike R., Tiemann K., Probst C., Mellert F., Welz A. Detection of coronary arteries and evaluation of anastomoses with a commercially available 15-MHz, broadband, linear array transducer. Heart Surg. Forum. 2007; 10 (5): E387–91. DOI: 10.1532/HSF98.20071061 
  34. Haaverstad R., Vitale N., Tjomsland O., Tromsdal A., Torp H., Samstad S.O. Intraoperative color Doppler ultrasound assessment of LIMA-to-LAD anastomoses in off-pump coronary artery bypass grafting. Ann. Thorac. Surg. 2002; 74 (4): S1390–4. DOI: 10.1016/ s0003-4975(02)04058-4 
  35. Andreasen J., Nohr D., Jorgensen A.S. A case report on epicardial ultrasonography of coronary anastomoses using a stabilizing device without the use of ultrasound gel. J. Cardiothorac. Surg. 2019; 14 (1): 59. DOI: 10.1186/s13019-019-0882-2

About Authors

  • Zviadi D. Shoniya, Postgraduate; orcid.org/0000-0001-7490-1811 
  • Igor' Yu. Sigaev, Dr. Med. Sc., Professor, Head of Department of Surgery for Combined Diseases of the Coronary and Main Arteries; orcid.org/0000-0002-1323-8072

 If you found mistakes, select text and press Alt+A