Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Реалистичная модель внутрисердечного потока крови на основе точных решений нестационарных уравнений гидродинамики для смерчеобразных потоков вязких жидкостей

E-mail: Сведения доступны для зарегистрированных пользователей.

Link: Clinical Physiology of Blood Circulaiton. 2012; (): -

Full text:  

Abstract

The study of intracardiac blood flow structure was carried out in the Bakoulev Scientific Center for Cardiovascular Surgery of Russian Academy of Medical Science over the past 20 years formed the basis for developing a mathematical model of intracardiac blood flow, based on exact solution of nonstationary hydrodynamic equations for the tornado-like flow of a viscous fluid. The model reproduces the spatial displacement of fluid elements in the velocity field parametrized by time-dependent functions, derived from the exact solution. These functions correspond to radial pressure gradient across the tornado-like jet, the circulation of the jet and the distance from the instantaneous position of the origin point of cylindrical coordinate system of the jet. These functions have a physical meaning and allow to bind the dynamic spatial anatomy of the left ventricular cavity and the hydrodynamic characteristics of the flow formed inside it. The model reproduces a wide range of states of intracardiac flow, which are depending on the orientation of the axis of flow, changes in the radius of the flow, the position of the azimuthal guide vanes (intracardiac trabeculas), and the viscosity of the medium. The model flux, evolving in accordance with known cardiodynamic principles occupies a 3D space similar to the shape of the left ventricular cavity.

References

Бокерия Л. А., Кикнадзе Г. И., Гачечиладзе И. А. и др. Анализ структуры внутрисердечного потока крови на основании исследований архитектоники трабекулярного слоя левого желудочка // Клин. физиология кровообращения. 2011. № 4. P. 18-28.
Городков А. Ю. Анализ структуры внутрисердечного закрученного потока крови на основании морфометрии трабекулярного рельефа левого желудочка сердца // Бюл. НЦССХ им. А. Н. Бакулева РАМН. 2003. Vol. 4, № 9. P. 61-66.
Городков А. Ю. Количественный анализ структурной организации пульсирующего потока крови в левом желудочке сердца и аорте: дис. ... д-ра биол. наук. М., 2004.
Bockeria L. A., Kiknadze G. I., Gachechiladze I. A., Gorodkov A. Y. Application of tornado-flow fundamental hydrodynamic theory to the study of blood flow in the heart - further development of tornado-like jet technology proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition ASME2011 November 11-17, 2011. Denver, Colorado, USA IMECE2011-63769.
Cheng Y., Oertel H., Schenkel T. Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase // Ann. Biomedic. Eng. 2005. Vol. 33, № 5. P. 567-576.
Domenichini F., Querzoli G., Cenedese A., Pedrizzetti G. Combined experimental and numerical analysis of the flow structure into the left ventricle // J. Biomechanics. 2007. Vol. 40. P. 1988-1994.
Garcia D., del Бlamo J. C., Tannй D. et al. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE transactions on medical imaging. 2010. Vol. 29, № 10, P. 1701-1713.
Gorodkov A., Dobrova N. B., Dubernard J.-Ph. et al. Anatomical structures determining blood flow in the heart left ventricle // J. Mat. Science: Materials in Medicine. 1996. Vol. 7, № 3. P. 153-160.
Kiknadze G. I., Gachechiladze I. A., Gorodkov A. Yu. Selforganization of tornado-like jets in flows of gases and liquids and the technologies utilizing this phenomenon // Proceedings of 2009 ASME Summer Heat Transfer Conference July 19-23, 2009. Westin St. Francis, San Francisco, California USA.
Kiknadze G. I., Gachechiladze I. A., Gorodkov A. J. et al. 3D quantitative analysis of flow velocity field inside the aorta during one cardiac contraction // CIMTEC 2002 - 3rd Forum on new materials 6th Int. Conf. «Materials in Clinical Applications» / Eds P. Vincenzini, R. Barbucci Techna Srl, 2003. P. 301-307.
Kiknadze G. I., Krasnov Yu. K. Evolution of a spout-like flow of a viscous // Fluid. Sov. Phys. Dokl. 1986. Vol. 31, № 10. P. 799-801.
Markl M., Kilner Ph., Ebbers J. T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance // J. Cardiovasc. Magn. Res. 2011. Vol. 13. P. 7.
Morbiducci U., Ponzini R., Rizzo G. et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study // Biomech. Model Mechanobiol. 2011. Vol. 10. P. 339-355.

 If you found mistakes, select text and press Alt+A