Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


a:2:{s:4:"TEXT";s:113:"Modern laboratory biomarkers in diagnostic of target-organs dysfunction in multiple organ dysfunction syndrome ";s:4:"TYPE";s:4:"HTML";}

Authors: I.I. Dement'eva, Yu.A. Morozov

Company:
B.V. Petrovskiy Russian Research Center of Surgery, Russian Academy of Medical Sciences, Abrikosovskiy pereulok, 2, Moscow, 119991, Russian Federation

Link: Clinical Physiology of Blood Circulaiton. 2015; (): -

Quote as: Dement'eva I.I., Morozov Yu.A.. Modern laboratory biomarkers in diagnostic of target-organs dysfunction in multiple organ dysfunction syndrome. Klinicheskaya Fiziologiya Krovoobrashcheniya (Clinical Physiology of Circulation, Russian journal). 2015; 1: 5-13 (in Russ.)

Full text:  

Abstract

This review presents the basic information on the generally pathophysiology of multiple organ dysfunction syndrome and especially the development of target-organ dysfunction. The modern biomarkers that can diagnose organ dysfunction in the early stages of their development.

References

  1. Baue A.E. Multiple, progressive, or sequential systems failure. A syndrome of the 1970s. Arch. Surg. 1975; 110 (7): 779—81.
  2. Iba T., Kidokoro A., Yagi Y. The role of the endothelium in changes in procoagulant activity in sepsis. J. Am. Coll. Surg. 1998; 187: 231—329.
  3. De Bel E.E., Goris R.J.A. Systemic inflammation after trauma, infection, and cardiopulmonary bypass: is autodestruction a necessary evil? In: Multiple organ failure: Pathophysiology, prevention, and therapy. New York: Springer-Verlag; 2000: 71—81.
  4. Van Der Poll T., Van Deventer S.J.H. Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. N. Am. 1999; 13: 413—26.
  5. Majetschak M., Waydhas C. Infection, bacteremia, sepsis, and the sepsis syndrome: Metabolic alterations, hypermetabolism, and cellular alterations. In: Multiple organ failure: Pathophysiology, prevention, and therapy. New York: Springer-Verlag; 2000: 101—7.
  6. Pinsky M.R. Pro- and anti-inflammatory balance in sepsis. Opin. Crit. Care. 2000; 6: 411—5.
  7. Nozawa E., Kobayashi E., Matsumoto M.E., Feltrim M.I., Carmona M.J., Auler J.J. Assessment of factors that influence weaning from long-term mechanical ventilation after cardiac surgery. Arq. Bras. Cardiol. 2003; 80: 301—10.
  8. Wandrup J.H. Quantifying pulmonary oxygen transfer deficits in critically ill patients. Acta Anaesth. Scand. 1995; 39 (107): 37—44.
  9. Gentelman S.M., Leclercq P.D., Moyes L., Graham D.I., Smith C., Griffin W.S. et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic. Sci. Int. 2004; 146: 97—104.
  10. Aguilar L. Psycometric analysis in children with mental retardation due to perinatal hypoxia treated with fibroblast growth factor (FGF) & showing improvement in mental development. J. Intellect. Disabil. Res. 1993; 37: 507—20.
  11. Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin. Chim. Acta. 2001; 310: 173—86.
  12. Elting J.W. De Jager A.E.J., Teelken A.W., Schaaf M.J., Maurits N.M., Van Der Naalt J. et al. Comparison of serum S- 100 protein levels following stroke and traumatic brain injury. J. Neurol. Sci. 2000; 181: 104—10.
  13. Bоttiger B.W., Mobes S., Glatzer R. Bauer H., Gries A., Bartsch. P. et al. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation. 2001; 103: 2694—8.
  14. Chertow G.M., Burdick E., Honour M., Bonventre J.V., Bates D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005; 16: 3365—7.
  15. Zhu J., Yin R., Wu H., Yi J., Luo L., Dong G. et al. Cystatin C as a reliable marker of renal function following heart valve replacement surgery with cardiopulmonary bypass. Clin. Chim. Acta. 2006; 374 (1—2): 116—21.
  16. Hamada Y., Kanda T., Anzai T., Kobayashi I . , Morishita Y. N-acetyl-beta-D-glucosaminidase is not a predictor, but an indicator of kidney injury in patients with cardiac surgery. J. Med. 1999; 30 (5—6): 329—36.
  17. Wagener G., Jan M., Kim M., Mori K., Barasch J.M., Sladen R.N. et al. Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery. Anesthesiology. 2006; 105 (3): 485—91.
  18. Han W.K., Waikar S.S., Johnson A., Betensky R.A., Dent C.L., Devarajan P. et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008; 73: 863—9.
  19. Cressey G., Roberts D.R.D., Snowden C.P. Renal tubular injury after infrarenal aortic aneurysm repair. J. Cardiothorac. Vasc. Anesth. 2002; 16: 290—3.
  20. Лишневская В.Ю. Метаболическая терапия при ИБС — из прошлого в будущее. Consilium Medicum Ukraina. 2008; 1: 34—9.
  21. Billiau A., Vandekerckhove F. Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock. Eur. J. Clin. Invest. 1991; 21 (6): 559—73.
  22. Трифонов И.Р. Биохимические маркеры некроза миокарда. Часть 1. Общая характеристика биомаркеров. Их применение для диагностики инфаркта миокарда: обзор современных рекомендаций. Кардиология. 2001; 41 (11): 93—8.
  23. De Filippi C.R., De Lemos J.A., Christenson R.H., Gottdiener J.S., Kop W.J., Zhan M. et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010; 304 (22): 2494—502.
  24. Van Nieuwenhoven F.A., Verstijnen C.P., Abumrad N.A., Willemsen P.H., Van Eys G.J., Van Der Vusse G.J. et al. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem. Biophys. Res. Commun. 1995; 207 (2): 747—52.
  25. Елисеев О.М. Натрийуретические пептиды. Эволюция знаний. Тер. арх. 2003; 9: 40—5.
  26. 26. Shor R., Rozenman Y., Bolshinsky A., Harpaz D., Tilis Y., Matas Z. et al. BNP in septic patients without systolic myocardial dysfunction. Eur. J. Int. Med. 2006; 17 (8): 536—40."
  27. Ogawa T., de Bold A.J. Uncoordinated regulation of atrial natriuretic factor and brain natriuretic peptide in lipopolysaccharide- treated rats. Biomarkers. 2012; 17 (2): 140—9.
  28. Casteleijn E., Kuiper J., Van Rooij H.C., Kamps J.A., J.F., Van Berkel T.J. Endotoxin stimulates glycogenolysis in the liver by means of intercellular communication. J. Biol. Chem. 1988; 263: 6953—5.
  29. Meinz H., Lacy D.B., Ejiofor J., McGuinness O.P. Alterations in hepatic gluconeogenic amino acid uptake and gluconeogenesis in the endotoxin treated conscious dog. Shock. 1998; 9: 296—303.
  30. Dhainaut J.F., Marin N., Mignon A., Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit. Care Med. 2001; 29: S42—7.
  31. Kraev A . I . , Torosoff M.T., Fabian T., Clement C.M., Perez- Tamayo R.A. Postoperative hyperbilirubinemia is an independent predictor of longterm outcomes after cardiopulmonary bypass. Am. Coll. Surg. 2008; 206 (4): 645—53.
  32. Welbourn N., Melrose D.G., Moss D.W. Changes in serum enzyme levels accompanying cardiac surgery with extracorpo- real circulation. J. Clin. Pathol. 1966; 19: 220—32.
  33. Chu C.M., Chang C.H., Liaw Y.F., Hsieh M.J. Jaundice after open heart surgery: a prospective study. Thorax. 1984; 39: 52—6.
  34. Collins J.D., Bassendine M.F., Ferner R. Blesovsky A., Murray A., Pearson D.T. et al. Incidence and prognostic importance of jaundice after cardiopulmonary bypass surgery. Lancet. 1983; 1: 1119—23.
  35. An Y., Xiao Y.B., Zhong Q.J. Hyperbilirubinemia after extracorporeal circulation surgery: a recent and prospective study. World J. Gastroenterol. 2006; 12 (41): 6722—6.

 If you found mistakes, select text and press Alt+A