Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Experience in analyzing the structure of swirling flow of blood in the heart and main vessels

Authors: Zazybo N.A.

Company:
A.N. Bakoulev Scientific Center for Cardiovascular Surgery, Ministry of Health of the Russia, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

UDC: 612.15-07

Link: Clinical Physiology of Blood Circulaiton. 2016; 13 (1): 37-44

Quote as: Zazybo N.A. Experience in analyzing the structure of swirling flow of blood in the heart and main vessels. Klinicheskaya Fiziologiya Krovoobrashcheniya (Clinical Physiology of Circulation, Russian journal). 2016; 13 (1): 37–44 (in Russ.).

Received / Accepted:  19.01.2016/12.02.2016

Full text:  

Abstract

Hemodynamic changes accompany almost any pathology of the circulatory system. In order to assess the patient's con- dition and predict the results of treatment is very important to quantify a link between the change in the structure and func- tion of blood circulation. The flow formed in central parts of the circulatory system differs from the laminar and turbulent flow and is twisted. Blood flow in the heart and great vessels are similar in properties to the tornado-like flows, described by the exact solution of Kiknadze–Krasnov unsteady hydrodynamic equations. They are characterized by low hydrody- namic resistance, absent or small longitudinal pressure gradient, significant transverse pressure gradient, a low level of interaction with the wall, the convergent shape of the channel, the ability to change the degree of convergence depending on the phase of evolution of the flow and formation of secondary vortex flows on the border with streamlined surface. Thus, principles of the structural organization of flow obtained from the analysis of exact solutions of unsteady equations of hydrodynamics can be applied to the analysis of blood flow in the left ventricle and the aorta.

References

1. Folkov B., Neal E. Circulation. London: Oxford University Press; 1971.
2. Schults D.L., Tunstall-Pedoe D.S., de Lee J.G., Gunning A.J., Bellhouse B.J. Velocity distribution and transition in the arterial system. In: Knight J., Wolstenholme G.E.W. (eds). Ciba foundation sympo- sium on circulatory and respiratory mass transport. London: Churchill; 1969: 172–99.
3. Coulter N.A. Jr, Pappenheimer J.R. Development of tur- bulence in flowing blood. Am. J. Physiol. 1949; 3: 401–8.
4. Педли Т. Гидродинамика крупных кровеносных
сосудов. М.: Мир; 1983.
5. Irisawa H., Wilson M.F., Rushmer R.F. Left ventricle as
a mixing chamber. Circulation Res. 1960; VIII: 183–7.
6. Taylor D.E., Wade J.D. Pattern of blood flow within the heart: A stable system. Cardiovasc. Res. 1973; 1: 14–21.
7. Chrispin A.R., Steiner R.E. Pulsatile flow in the pul- monary circulation: A cinefluoroscopic study. Br. Heart
J. 1964; 26: 592–9.
8. Бураковский В.И., Доброва Н.Б., Кузьмина Н.Б.,
Агафонов A.B., Роева Л.A., Дрогайцев А.Д. и др. Характер потока крови в левом желудочке сердца (экспериментальное исследование). Эксперимен- тальная хирургия и анестезиология. 1976; 3: 13–6.
9. Углов Ф.Г., Зубцовский В.Н., Большаков О.П., Мурсалова Ф.А., Тарасов А.Н., Орловский П.И. и др. Топография рельефа внутренней поверхности стенки левого желудочка сердца в фазе диастолы. Архив анатомии. 1984; 9: 33–41.
10. Чеканов В.С., Шаталов К.В., Роева Л.А. Адапта- ционное преобразование архитектоники левого желудочка сердца в отдаленные сроки после им- плантации апико-аортального кондуита (по мате- риалам экспериментального исследования). Груд- ная и сердечно-сосудистая хирургия. 1991; 7: 25–30.
11. Асфандияров Р.И., Моталин С.Б. Структуры серд- ца как главный фактор обеспечения закрученных потоков крови в организме человека на этапах он- тогенеза. Российские морфологические ведомости. 2000; 3: 23–30.
12. Якимов А.А. Трабекулы левожелудочковой поверх- ности межжелудочковой перегородки в сердце плода человека. Морфология. 2012; 5: 44–8.
13. Sedmera D., Pexieder T., Rychterova V., Hu N., Clark E.B. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 1999; 254: 238–52.
14. Ключников И.В. Ишемическое ремоделирование левого желудочка в коронарной хирургии: Дис. ... д-ра мед. наук. М.; 2002.
15. Stonebridge P.A., Brophy C.M. Spiral laminar flow in arteries? Lancet. 1991; 8779: 1360–1.
16. Nerem R.M., Girard P.R. Hemodynamic influences on vascular endothelial biology. Toxicol. Pathol. 1990; 18: 572–82.
17. Flaherty J.R., Pierce J.R., Ferrans V.J., Patel D.J., Tucker W.K., Fry D.L. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 1972; 30: 23–30.
18. Horskotte D. Abnormal cardiac anatomy and physiolo- gy. In: Butchart E.G., Bodnar E. (eds). Current issues in heart valve disease: Thrombosis, embolism and bleed- ing. London: ICR Publishers; 1992: 31–69.
19. Levesque M.J., Liepsch D., Moravec S., Nerem R.M. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis. 1986; 6: 220–9.
20. Paulsen P.K., Hasenkam J.M. Three-dimensional visu- alization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer. J. Biomech. 1983; 3: 201–10.
21. Farthing S., Peronneau P. Flow in the thoracic aorta. Cardiovasc. Res. 1979; 11: 607–20.
22. Segadal L. Velocity distribution model for normal blood flow in the human ascending aorta. Med. Biol. Eng. Comput. 1991; 29 (5): 489–92.
23. Kupari M., Hekali P., Poutanen V.P. Cross sectional profiles of systolic flow velocities in left ventricular out- flow tract of normal subjects. Br. Heart J. 1995; 1: 34–9.
24. Samstad S.O., Torp H.G., Linker D.T., Rossvoll O., Skjaerpe T., Johansen E. et al. Cross sectional early mitral flow velocity profiles from colour Doppler. Br. Heart J. 1989; 3: 177–84.
25. Kiknadze G.I., Krasnov Yu.K. Evolution of a spout-like flow of a viscous fluid. Sov. Phys. Dokl. 1986; 10: 799–801.
26. Kvitting P., Hessevik I., Matre K., Segadal L. Three- dimensional cross-sectional velocity distribution in the ascending aorta in cardiac patients. Clin. Physiol. 1996; 3: 239–58.
27. Sloth E., Pedersen E.M., Nygaard H., Hasenkam J.M., Juhl B. Multiplane transesophageal Doppler echocar- diographic measurements of the velocity profile in the human pulmonary artery. J. Am. Soc. Echocardiogr. 1994; 2: 132–40.
28. Botnar R., Scheidegger M.B., Boesiger P. Quanti- fication of blood flow patterns in human vessels by mag- netic resonance imaging. Technol. Health Care. 1996; 1: 97–112.
29. Kilner P.J., Yang G.Z., Mohiaddin R.H., Firmin D.N., Longmore D.B. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993; 88: 2235–47.
30. Bogren H.G., Buonocore M.H. Complex flow patterns in the great vessels: A review. Int. J. Card. Imaging. 1999; 2: 105–13.
31. Городков А.Ю. Количественный анализ структур- ной организации пульсирующего потока крови в левом желудочке сердца и аорте. Дис. ... д-ра биол. наук. М.; 2004.
32. Yoshii S., Mohri N., Kamiya K., Tada Y. Cinemagnetic resonance imaging study of blood flow and wall motion of the aortic arch. Jpn Circ. J. 1996; 8: 553–9.
33. Boesiger P., Maier S.E., Kecheng L., Scheideg- ger M.B., Meier D. Visualization and quantification of the human blood flow by magnetic resonance imaging. J. Biomech. 1992; 1: 55–67.
34. Smith A.S., Bellon J.R. Parallel and spiral flow patterns of vertebral artery contributions to the basilar artery. Am. J. Neuroradiol. 1995; 8: 1587–91.
35. Van Langenhove G., Wentzel J.J., Krams R., Sla- ger C.J., Hamburger J.N., Serruys P.W. Helical velocity patterns in a human coronary artery: А three-dimen- sional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation. 2000; 3: E22–4.
36. Kiknadze G.I., Gachechiladze I.A., Alekseev V.V. Tornado-like Jet self-organization in viscous continu- um flows and heat and mass transfer intensification during this phenomenon. Moscow: MEI; 2005.
37. Бокерия Л.A., Городков A.Ю., Кикнадзе Г.И., Ни- колаев Д.А., Гачечиладзе И.A. Анализ поля скоро- стей закрученного потока крови в аорте на основа- нии трехмерного картирования с помощью МР-велосиметрии. Бюллетень НЦССХ им. А.Н. Ба- кулева РАМН. 2003; 4 (9): 70–4.
38. Гольдштик М.А., Штерн В.Н., Яворский Н.И. Вяз- кие течения с парадоксальными свойствами. Но- восибирск: Наука; 1989.

 If you found mistakes, select text and press Alt+A