Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Influence saline on the strength characteristics of the polymer scaffolds from polylactic acid

Authors: Sh.D. Akhmedov 1, V.A. Lugovskiy 1, S.L. Andreev 1, Yu.Yu. Vecherskiy 1, V.V. Zatolokin 1, S.I. Tverdokhlebov 2, S.A. Afanas'ev 1

Company:
1 Cardiology Research Institute, ul. Kievskaya, 111A, Tomsk, 634012, Russian Federation;
2 National Research Tomsk Polytechnic University, prospekt Lenina, 30, Tomsk, 634050, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

UDC: 612.014.45:577.1

Link: Clinical Physiology of Blood Circulaiton. 2016; 13 (3): 148-153

Quote as: Akhmedov Sh.D., Lugovskiy V.A., Andreev S.L., Vecherskiy Yu.Yu., Zatolokin V.V., Tverdokhlebov S.I., Afanas'ev S.A. Influence saline on the strength characteristics of the polymer scaffolds from polylactic acid. Klinicheskaya Fiziologiya Krovoobrashcheniya (Clinical Physiology of Circulation, Russian journal). 2016; 13 (3): 148-53 (in Russ.).

Received / Accepted:  05.05.2016/13.09.2016

Full text:  

Abstract

Objective: to study possibility of using polymer matrix to produce small diameter vascular grafts for cardiovascular surgery by evaluation of its mechanical performance after its being placed into physiological saline.

Material and methods. Non-woven polymer matrix was placed into sterile physiological saline for the period of 11 months. In 2, 4, 8 and 11 months 2 mm wide samples (n=10) were cut from the studied matrix and tested at an electromechanical test machine Instron 3343 (USA) up until its destruction. During the process maximum tension (T) and stretching (mm) of the samples were registered. The data obtained were compared to the initial values of mechanical performance of this matrix and basing on this comparison dynamics of mechanical properties (max tension and stretching) of the studied samples was evaluated. Results of this evaluation were, in their turn, compared to mechanical performance of a human mammary artery treated the same way. Basing on this, the possibility of using the studied non-woven matrix to produce small diameter vascular grafts was considered.

Results. We noticed 39.6% reduction of mechanical performance of the matrix from its initial value. Degradation processes were noticed to take place in the structure of the non-woven matrix.

Conclusion. To achieve the strength of the polymer matrix after exposure to an aqueous solution for a year, with mammary artery comparable strength requires an increase in the wall thickness of the prosthesis to the biopolymer 0.7-1 mm.

References

  1. Ахмедов Ш.Д., Афанасьев С.А., Егорова М.В., Ан дреев С.Л., Иванов А.В., Роговская Ю.В. и др. Тканевая инженерия в экспериментальной сердечнососудистой хирургии: технология получения бесклеточных коллагеновых матриксов сосудов животных и человека. Клеточная трансплантология и тканевая инженерия. 2011; 6 (1): 68—72.
  2. Ахмедов Ш.Д., Афанасьев С.А., Дьякова М.Л., Фатхутдинов ТХ., Кактурский Л.В. Использование бесклеточного матрикса для формирования новых кровеносных сосудов и сердца методом тканевой инженерии. Клеточная трансплантология и тканевая инженерия. 2009; 4 (2): 32—9.
  3. Nezarati R.M., Eifert M.B., Dempsey D.K., Cosgriff- Hernandez E. Electrospun vascular grafts with improved compliance matching to native vessels. J. Biomed. Mater. Res. Part B. Appl. Biomater. 2015; 103 (2): 313-23.
  4. Shin'oka T, Imai Y., Ikada YN. Transplantation of a tissue-engineered pulmonary artery. Engl. J. Med. 2001; 344 (7): 532-3.
  5. Pektok E., Nottelet B., Tille J., Gurny R., Kalangos A., Moeller M. Degradation and healing characteristics of small-diameter poly (e-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation. 2008; 118 (24): 2563-70.
  6. Tillman B.W., Yazdani S.K., Lee S.J., Geary R.L., Atala A., Yoo J.J. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009; 30 (4): 583-8.
  7. Shum-Tim D., Stock U., Hrkach J., Shinoka T, Lien J., Moses M. et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann. Thorac. Surg. 1999; 68 (6): 2298-304.
  8. Tiwari A., Salacinski H., Seifalian A.M., Hamilton G. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc. Surg. 2002; 10 (3): 191-7.
  9. Zhang WJ., Liu W, Cui L., Cao Y Tissue engineering of blood vessel. Cell. Mol. Med. 2007; 11 (5): 945-57.
  10. Bolgen N., Menceloglu Y, Acatay K., Vargel I., Pis- kin E. In vitro and in vivo degradation of non-woven materials made of poly (e-caprolactone) nanofibers prepared by electrospinning under different conditions. J. Biomater. Sci. Polym. Ed. 2005; 16 (12): 1537-55.
  11. Catto V., Fare S., Freddi G., Tanzi M. Vascular tissue engineering: recent advances in small diameter blood vessel regeneration. ISRN Vasc. Med. 2014; 2014: 1-27.
  12. Шехтер А.Б. Тканевая реакция на имплантацию различных материалов. Биосовместимые материалы. М.: Медицинское информационное агентство; 2011: 130-58.
  13. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials science: an introduction to materials in medicine. Oxford: Academic Press; 2012.
  14. Wu W, Allen R.A., Wang Y Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 2012; 18 (7): 1148-53.
  15. Хлусов И.А., Зайцев К.В., Жукова О.Б., Гостюхина А.А., Абдулкина Н.Г, Зайцев А.А. и др. Динамика in vitro деградации нетканых матриксов из полимолочной кислоты в модельной биологической жидкости. Бюллетень сибирской медицины. 2013; 12 (6): 73-81.
  16. Kannus P. Immobilization or early mobilization after an acute soft-tissue injury? Physic. Sportsmed. 2000; 28 (3): 55-63.

 If you found mistakes, select text and press Alt+A