Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Chronic hypoxemia as a risk factor for complications in patientswith cyanotic congenital heart diseases

Authors: A.P. Chislova, D.V. Kovalev, T.O. Astrakhantseva

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Ministry of Health of the Russian Federation, Rublevskoe shosse, 135, Moscow, 121552, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2018-15-1-5-11

UDC: 612.273.1-036.12:616.12-007-053.1-089.166-06

Link: Clinical Physiology of Blood Circulaiton. 2017; 15 (1): 5-11

Quote as: Chislova A.P., Kovalev D.V., Astrakhantseva T.O. Chronic hypoxemia as a risk factor for complications in patients with cyanotic congenital heart diseases. Klinicheskaya Fiziologiya Krovoobrashcheniya (Clinical Physiology of Circulation, Russian journal). 2018; 15 (1): 5–11 (in Russ.). DOI: 10.24022/1814-6910-2018-15-1-5-11

Received / Accepted:  09.11.2017/10.11.2017

Full text:  

Abstract

In patients with cyanotic congenital heart disease, chronic hypoxemia leads to a number of adaptive changes (polycythemia) and damage to organ systems. These pathophysiological changes can develop complications in patients following cardiac surgery with cardiopulmonary bypass. Secondary erythrocytosis is associated with increased blood viscosity and increased risk of thrombosis and embolism. High hematocrit and decrease in plasma volume lead to a deficiency of multiple coagulation factors and increase the risks of intraoperative bleeding. In this review, polycythemia and changes in rheology of blood, coagulopathy, diastolic myocardial dysfunction and proteinuria are considered. The pathogenesis of myocardial reoxygenation injury and the concept of “controlled reoxygenation” are presented. Risk factors and some methods of preventing the development of complications due to chronic hypoxemia during cardiosurgery operations are considered.

References

  1. Katayama Y., Horigome H., Murakami T., Takahashi- Igari M., Miyata D., Tanaka K. Evaluation of blood rheology in patients with cyanotic congenital heart disease using a microchannel array flow analyzer. Clin. Hemorheol. Microcirc. 2006; 35 (4): 499–508.

  2. Cordina R.L., Celermajer D.S. Chronic cyanosis and vascular function: implications for patients with cyanotic congenital heart disease. Cardiol. Young. 2010; 20 (3): 242–53.

  3. Kajimoto H., Nakazawa M., Murasaki K., Mori Y., Tanoue K., Kasanuki H., Nakanishi T. Increased thrombogenesity in patients with cyanotic congenital heart disease. Circ. J. 2007; 71 (6): 948–53.

  4. DeFilippis A.P., Law K., Curtin S., Eckman J.R. Blood is thicker than water: the management of hyperviscosity in adults with cyanotic heart disease. Cardiol. Rev. 2007; 15 (1): 31–4.

  5. Rose S.S., Shah A.A., Hoover D.R., Saidi P. Cyanotic congenital heart disease (CCHD) with symptomatic erythrocytosis. J. Gen. Intern. Med. 2007; 22 (12): 1775–7.

  6. Braun S.L., Eicken A., Kaemmerer H. Iron deficiency in a patient with extreme erythrocytosis due to cyanotic congenital heart disease. Int. J. Cardiol. 2007; 116 (2): 74–5.

  7. Gaiha M., Sethi H.P., Sudha R., Arora R., Acharya N.R. A clinico-hematological study of iron deficiency anemia and its correlation with hyperviscosity symptoms in cyanotic congenital heart disease. Indian Heart J. 1993; 45 (1): 53–5.

  8. Reiss U.M., Bensimhon P., Zimmerman S.A., Ware R.E. Hydroxyurea therapy for management of secondary erythrocytosis in cyanotic congenital heart disease. Am. J. Hematol. 2007; 82 (8): 740–3.

  9. Broberg C.S., Bax B.E., Okonko D.O., Rampling M.W., Bayne S., Harries C. et al. Blood viscosity and its relationship to iron deficiency, symptoms, and exercise capacity in adults with cyanotic congenital heart disease. J. Am. Coll. Cardiol. 2006; 48 (2): 356–65.

  10. Лебединский К.М., Басова В.А., Баутин А.Е., Бестаев Г.Г., Ваневский П.В., Васильева Г.Н. и др. Кровообращение и анестезия. Оценка и коррекция системной гемодинамики во время операции и анестезии. Санкт-Петербург; 2015. [Lebedinskiy K.M., Basova V.A., Bautin A.E., Bestaev G.G., Vanevskiy P.V., Vasil’eva G.N. et al. Circulation and anesthesia. Systemic circulation assessment and management during surgery and anesthesia. St. Petersburg; 2015 (in Russ.).]

  11. Хенсли Ф.А. (мл.), Мартин Д.Е., Грэвли Г.П. Практическая кардиоанестезиология. Пер. с англ. под ред. Бунятяна А.А. М.: Медицинское информационное агентство; 2008. [Hensley F.A. Jr., Martin D.E., Gravlee G.P. A practical approach to cardiac anesthesia. Moscow: Meditsinskoe Informatsionnoe Agentstvo; 2008 (in Russ.).]

  12. Самсонова Н.Н., Козар Е.Ф., Плющ М.Г., Климович Л.Г., Самуилова Д.Ш. Характеристика системы гемостаза у кардиохирургических больных первого года жизни с врожденными пороками сердца. Детские болезни сердца и сосудов. 2005; 4: 54–8. [Samsonova N.N., Kozar E.F., Plyushch M.G., Klimovich L.G., Samuilova D.Sh. Characteristics of the hemostasis system in first year cardiosurgical patients with congenital heart diseases. Detskie Bolezni Serdtsa i Sosudov (Children’s Heart and Vascular Diseases, Russian journal). 2005; 4: 54–8 (in Russ.).]

  13. Monagle P., Chan A., Massicotte P., Chalmers E., Michelson A.D. Antithrombotic therapy in children. Chest. 2004; 126: 645–87.

  14. Zabala L.M., Guzzetta N.A. Cyanotic congenital heart disease (CCHD): focus on hypoxemia, secondary erythrocytosis, and coagulation alterations. Paediatr. Anaesth. 2015; 25 (10): 981–9.

  15. Laskine-Holland M.L., Kahr W.H., Crawford-Lean L., Humpl T., Honjo O., Foreman C. et al. The Association Between Cyanosis and Thromboelastometry (ROTEM) in children with congenital heart defects: a retrospective cohort study. Anesth. Analg. 2017; 124 (1): 23–9.

  16. Cui Y., Hei F., Long C., Feng Z., Zhao J., Yan F., Wang Y., Liu J. Perioperative monitoring of thromboelastograph on hemostasis and therapy for cyanotic infants undergoing complex cardiac surgery. Artif. Organs. 2009; 33 (11): 909–14.

  17. Tempe D.K., Virmani S. Coagulation abnormalities in patients with cyanotic congenital heart disease. J. Cardiothorac. Vasc. Anesth. 2002; 16 (6): 752–65.

  18. Vida V.L., Spiezia L., Bortolussi G., Marchetti M.E., Campello E., Pittarello D. et al. The coagulative profile of cyanotic children undergoing cardiac surgery: the role of whole blood preoperative thromboelastometry on postoperative transfusion requirement. Artif. Organs. 2016; 40 (7): 698–705.

  19. Kim J.Y., Shin Y.R., Kil H.K., Park M.R., Lee J.W. Reference intervals of thromboelastometric evaluation of coagulation in pediatric patients with congenital heart diseases: a retrospective investigation. Med. Sci. Monit. 2016; 22: 3576–87.

  20. Westbury S.K., Lee K., Reilly-Stitt C., Tulloh R., Mumford A.D. High haematocrit in cyanotic congenital heart disease affects how fibrinogen activity is determined by rotational thromboelastometry. Thromb. Res. 2013; 132 (2): 145–51.

  21. Brauer S.D., Applegate R.L. 2nd, Jameson J.J., Hay K.L., Lauer R.E., Herrmann P.C., Bull B.S. Association of plasma dilution with cardiopulmonary bypass-associated bleeding and morbidity. J. Cardiothorac. Vasc. Anesth. 2013; 27 (5): 845–52.

  22. Kapoor P.M., Narula J., Chowdhury U.K., Kiran U., Taneja S. Serum albumin perturbations in cyanotics after cardiac surgery: Patterns and predictions. Ann. Card. Anaesth. 2016; 19 (2): 300–5.

  23. Oliver W.C. Jr, Beynen F.M., Nuttall G.A., Schroeder D.R., Ereth M.H., Dearani J.A., Puga F.J. Blood loss in infants and children for open heart operations: albumin 5% versus Fresh-Frozen plasma in the prime. Ann. Thorac. Surg. 2003; 75 (5): 1506–12.

  24. Dinleyici E.C., Kilic Z., Buyukkaragoz B., Ucar B., Alatas O., Aydogdu S.D., Dogruel N. Serum IGF-1, IGFBP-3 and growth hormone levels in children with congenital heart disease: relationship with nutritional status, cyanosis and left ventricular functions. Neuro Endocrinol. Lett. 2007; 28 (3): 279–83.

  25. Qipshidze N., Tyagi N., Metreveli N., Lominadze D., Tyagi S.C. Autophagy mechanism of right ventricular remodeling in murine model of pulmonary artery constriction. Am. J. Physiol. Heart Circ. Physiol. 2012; 302 (3): 688–96.

  26. Sugimoto M., Saiki H., Tamai A., Seki M., Inuzuka R., Masutani S., Senzaki H. Ventricular fibrogenesis activity assessed by serum levels of procollagen type III N-terminal amino peptide during the staged Fontan procedure. J. Thorac. Cardiovasc. Surg. 2016; 151 (6): 1518–26.

  27. Ghorbel M.T., Cherif M., Jenkins E., Mokhtari A., Kenny D., Angelini G.D. et al. Transcriptomic analysis of patients with tetralogy of Fallot reveals the effect of chronic hypoxia on myocardial gene expression. J. Thorac. Cardiovasc. Surg. 2010; 140 (2): 337–45.

  28. Ferrari R., Alfieri O., Curello S., Ceconi C., Cargnoni A., Marzollo P. et al. Occurrence of oxidative stress during reperfusion of the human heart. Circulation. 1990; 81 (1): 201–11.

  29. Allen B.S., Ilbawi M.N. Hypoxia, reoxygenation and the role of systemic leukodepletion in pediatric heart surgery. Perfusion. 2001; 16: 19–29.

  30. Ihnken K., Morita K., Buckberg G.D., Winkelmann B., Schmitt M., Ignarro L.J., Sherman M.P. Nitric-oxideinduced reoxygenation injury in the cyanotic immature heart is prevented by controlling oxygen content during initial reoxygenation. Angiology. 1997; 48 (3): 189–202.

  31. Zweier J.L., Talukder M.A. The role of oxidants and free radicals in reperfusion injury. Cardiovasc. Res. 2006; 70 (2): 181–90.

  32. Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S. et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015; 6: 183–97.

  33. Rokicki W., Strzalkowski A., Klapcinska B., Danch A., Sobczak A. Antioxidant status in newborns and infants suffering from congenital heart defects. Wiad Lek. 2003; 56 (7–8): 337–40. 34. Ercan S., Cakmak A., Kosecik M., Erel O. The oxidative state of children with cyanotic and acyanotic congenital heart disease. Anadolu Kardiyol. Derg. 2009; 9 (6): 486–90.

  34. Samaja M., Motterlini R., Santoro F., Dell’ Antonio G., Corno A. Oxidative injury in reoxygenated and reperfused hearts. Free Radic. Biol. Med. 1994; 16 (2): 255–62.

  35. Morita K. Surgical reoxygenation injury of the myocardium in cyanotic patients: clinical relevance and therapeutic strategies by normoxic management during cardiopulmonary bypass. Gen. Thorac. Cardiovasc. Surg. 2012; 60 (9): 549–56.

  36. Ihnken K. Myocardial protection in hypoxic immature hearts. Thorac. Cardiovasc. Surg. 2000; 48 (1): 46–54.

  37. Modi P., Imura H., Caputo M., Pawade A., Parry A., Angelini G.D., Suleiman M.S. Cardiopulmonary bypass-induced myocardial reoxygenation injury in pediatric patients with cyanosis. J. Thorac. Cardiovasc. Surg. 2002; 124: 1035–6.

  38. Allen B.S., Rahman S., Ilbawi M.N., Kronon M., Bolling K.S., Halldorsson A.O. et al. Detrimental effects of cardiopulmonary bypass in cyanotic infants: preventing the reoxygenation injury. Ann. Thorac. Surg. 1997; 64 (5): 1381–7.

  39. Morita K., Ihnken K., Buckberg G.D. Studies of hypoxemic/reoxygenation injury: with aortic clamping. XII. Delay of cardiac reoxygenation damage in the presence of cyanosis: a new concept of controlled cardiac reoxygenation. J. Thorac. Cardiovasc. Surg. 1995; 110 (4, Pt 2): 1265–73.

  40. Allen B.S., Ilbawi M.N. Hypoxia, reoxygenation and the role of systemic leukodepletion in pediatric heart surgery. Perfusion. 2001; 16 (Suppl.): 19–29.

  41. Caputo M., Mokhtari A., Rogers C.A., Panayiotou N., Chen Q., Ghorbel M.T. et al. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: a randomized controlled trial. J. Thorac. Cardiovasc. Surg. 2009; 138 (1): 206–14.

  42. Caputo M., Mokhtari A., Miceli A., Ghorbel M.T., Angelini G.D., Parry A.J. et al. Controlled reoxygenation during cardiopulmonary bypass decreases markers of organ damage, inflammation, and oxidative stress in singleventricle patients undergoing pediatric heart surgery. J. Thorac. Cardiovasc. Surg. 2014; 148 (3): 792–801.

  43. Modi P., Suleiman M.S., Reeves B., Pawade A., Parry A.J., Angelini G.D. et al. Myocardial metabolic changes during pediatric cardiac surgery: a randomized study of 3 cardioplegic techniques. J. Thorac. Cardiovasc. Surg. 2004; 128 (1): 67–75.

  44. Bolling K., Kronon M., Allen B.S., Wang T., Ramon S., Feinberg H. Myocardial protection in normal and hypoxically stressed neonatal hearts: the superiority of blood versus crystalloid cardioplegia. J. Thorac. Cardiovasc. Surg. 1997; 113 (6): 994–1003.

  45. Dittrich S., Kurschat K., Lange P.E. Abnormal rheology in cyanotic congenital heart disease–a factor in nonimmune nephropathy. Scand. J. Urol. Nephrol. 2001; 35 (5): 411–5.

  46. Dittrich S., Kurschat K., Dähnert I., Vogel M., Müller C., Alexi-Meskishvili V., Lange P.E. Renal function after cardiopulmonary bypass surgery in cyanotic congenital heart disease. Int. J. Cardiol. 2000; 73 (2): 173–9. 48. Dittrich S., Priesemann M., Fischer T., Boettcher W., Müller C., Dähnert I. et al. Hemorheology and renal function during cardiopulmonary bypass in infants. Cardiol. Young. 2001; 11 (5): 491–7.

  47. Bhardwaj V., Kapoor P.M., Irpachi K., Ladha S., Chowdhury U.K. Basic arterial blood gas biomarkers as a predictor of mortality in tetralogy of Fallot patients. Ann. Card. Anaesth. 2017; 20 (1): 67–71.

  48. Lopez-Delgado J.C., Esteve F., Javierre C., Torrado H., Rodriguez-Castro D., Carrio M.L. et al. Evaluation of serial arterial lactate levels as a predictor of hospital and long-term mortality in patients after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2015; 29 (6): 1441–53.

  49. Maillet J.M., Le Besnerais P., Cantoni M., Nataf P., Ruffenach A., Lessana A., Brodaty D. Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery. Chest. 2003; 123 (5): 1361–6.

  50. Badreldin A.M., Doerr F., Elsobky S., Brehm B.R., Abul-dahab M., Lehmann T. et al. Mortality prediction after cardiac surgery: blood lactate is indispensible. Thorac. Cardiovasc. Surg. 2013; 61 (8): 708–17.

  51. Ladha S., Kapoor P.M., Singh S.P., Kiran U., Chowdhury U.K. The role of blood lactate clearance as a predictor of mortality in children undergoing surgery for tetralogy of Fallot. Ann. Card. Anaesth. 2016; 19 (2): 217–24.

About Authors

  • Chislova Anna Pavlovna, Anesthesiologist-Intensivist; orcid.org/0000-0003-0928-9392
  • Kovalev Dmitriy Viktorovich, Dr. Med. Sc., Leading Researcher, Cardiovascular Surgeon; orcid.org/0000-0002-4586-9258
  • Astrakhantseva Tat’yana Olegovna, Dr. Med. Sc., Leading Researcher, Cardiologist; orcid.org/0000-0002-8393-0275

 If you found mistakes, select text and press Alt+A