Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Hemodynamic recovery in the early postoperative period after geometric reconstruction of the left ventricle

Authors: Lobacheva G.V., Alshibaya M.D., Mamalyga M.L., Musin D.E., Cheishvili Z.M., Krymov K.V., Maksimova A.G.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-1-16-23

UDC: 616.124.2:612.13]-089.168.1

Link: Clinical Physiology of Blood Circulaiton. 2023; 1 (20): 16-23

Quote as: Lobacheva G.V., Alshibaya M.D., Mamalyga M.L., Musin D.E., Cheishvili Z.M., Krymov K.V., Maksimova A.G. Hemodynamic recovery in the early postoperative period after geometric reconstruction of the left ventricle. Clinical Physiology of Circulation. 2023; 20 (1): 16–23 (in Russ.). DOI: 10.24022/1814-6910-2023-20-1-16-23

Received / Accepted:  15.02.2023 / 17.03.2023

Download
Full text:  

Abstract

Objective. To develop an optimal protocol of targeted therapy to restore hemodynamics in patients in the early postoperative period after geometric reconstruction of the left ventricle (GRLV) and study the effectiveness of their use.

Material and methods. 45 patients underwent GRLV were studied. The patients were divided into 2 groups: group I – patients who in the early postoperative period chose the strategy of oxygen delivery control, group II – the strategy of central hemodynamic parameters control. All patients before and after GRLV surgery had central hemodynamic and oxygen transport calculations, 6-minute walk test, extracellular fluid dynamics were assessed by integrated rheovasography using Diamant-R complex. Statistical data analysis was performed using SPSS computer program.

Results. Analysis of the study results showed that the first postoperative day was characterized by a decrease in oxygen delivery in patients of groups I and II by 39.7% and 46.4%, respectively. At the same time cardiac output in the studied groups remained at preoperative level, and stroke volume in groups I and II was decreased by 27% and 30.3%, respectively. Integral rheography revealed an increase in extracellular fluid in groups I and II by 25.6% and 28%, respectively. The third postoperative day was characterized by restoration of oxygen delivery in group I, whereas in group II it remained reduced by 36% from the preoperative level. Similar dynamics persisted in the oxygen consumption index. Cardiac output, stroke volume, left ventricular work index remained at the preoperative level. Pulmonary vascular resistance index (PVRI) in group I decreased 1.64-fold, whereas in group II it remained at the preoperative level. The volume of extracellular fluid in group I exceeded the preoperative level by 24.7%, and in group II by 26.5%. The sixth postoperative day is characterized by the recovery of oxygen consumption to the preoperative level. At the same time, oxygen delivery in group II remains reduced by 25.6%, in contrast to group I, where the preoperative level of delivery is maintained. In group II, there was a 31.4% decrease in PVRI and pulse peripheral vascular resistance index (PPVRI) to the preoperative level. On the ninth postoperative day, oxygen delivery in group II reaches the preoperative level. Thus, oxygen delivery in group I is faster and reaches the preoperative level on day 3, whereas in group II it reaches the preoperative level only on day 9. There was also a more rapid reduction of left ventricular afterload in group I. This is evidenced by the recovery of PPVRI in group I on day 3, whereas in group II it occurs only on day 6. Left ventricular stroke work index in group I was 31.5% higher than in group II. By day 9, hydrobalance in group II is restored to the preoperative level.

Conclusion. The studies have shown that early postoperative recovery in GRLV cannot be limited to the assessment of hemodynamic parameters only; the effective recovery of patients requires control and targeted correction of oxygen balance. Its control provides an opportunity to decrease postload more quickly, to increase LV index and to improve microcirculation in early postoperative period. Moreover, in compression compensated chronic heart failure the preoperative values of systemic hemodynamics and oxygen delivery can serve as an individual target level, which should be achieved in early postoperative period. The strategy aimed at restoration of oxygen delivery contributes to faster activation of the patient.

References

  1. Шумаков Д.В., Вишнякова М.В., Пронина В.П., Зыбин Д.И., Абраменко А.С., Шехян Г.Г., Попов М.А. Непосредственные и отдаленные результаты хирургической реконструкции аневризмы левого желудочка. Кардиология и сердечно-сосудистая хирургия. 2019; 12 (6): 494–9. DOI: 10.17116/kardio201912061494
  2. Sui Y., Teng S., Qian J., Zhao Z., Zhang Q., Wu Y. Treatment outcomes and therapeutic evaluations of patients with left ventricular aneurysm. J. Int. Med. Res. 2019; 47 (1): 244–51. DOI: 10.1177/0300060518800127
  3. Паромов К.В., Ленькин А.И., Кузьков В.В., Киров М.Ю. Целенаправленная оптимизация гемодинамики в периоперационном периоде: возможности и перспективы. Патология кровообращения и кардиохирургия. 2014; 18 (3): 59–66. DOI: 10.21688/1681-3472-2014-3-59-66
  4. Паромов К.В., Ленькин А.И., Кузьков В.В., Киров М.Ю. Анестезиолог и гемодинамика: что нам дают протоколы целенаправленной терапии. Тихоокеанский медицинский журнал. 2012; 3 (49): 17–21.
  5. Йовенко И.А., Кобеляцкий Ю.Ю., Царев А.В., Кузьмова Е.А., Машин А.М. Гемодинамический мониторинг в практике интенсивной терапии критических состояний. Медицина неотложных состояний. 2016; 5 (76): 42–6. DOI: 10.22141/2224-0586.5.76.2016.76433
  6. Смёткин А.А., Киров М.Ю., Кузьков В.В., Лёнькин А.И., Еремеев А.В., Сластилин В.Ю., Бородин В.В. Мониторинг гемодинамики и транспорта кислорода при реваскуляризации миокарда на работающем сердце. Общая реаниматология. 2009; 5 (3): 34–8. DOI: 10.15360/1813-9779-2009-3-34
  7. Янковская Л.В., Пицко Д.В. Мониторинг в кардиологических блоках интенсивной терапии. Международный журнал сердца и сосудистых заболеваний. 2016; 4 (12): 52–62. 22 Clinical Physiology of Heart Clinical Physiology of Circulation. 2023; 20 (1). DOI: 10.24022/1814-6910-2023-20-1-16-23
  8. Киров М.Ю., Кузьков В.В. Оптимизация гемодинамики в периоперационном периоде: обзор литературы. Вестник анестезиологии и реаниматологии. 2012; 9 (5): 56–66.
  9. Мороз Г.Б., Фоминский Е.В., Шилова А.Н., Караськов А.М., Корнилов И.А., Пустоветова М.Г., Ломиворотов В.В. Влияние целенаправленной терапии различными инфузионными средами на содержание внесосудистой воды легких у кардиохирургических больных. Общая реаниматология. 2015; 11 (3): 54–64. DOI: 10.15360/1813-9779-2015- 3-54-64
****
  1. Shumakov D.V., Vishnyakova M.V., Pronina V.P., Zybin D.I., Abramenko A.S., Shekhyan G.G., Popov M.A. Immediate and long-term results of surgical reconstruction of left ventricular aneurysm. Russian Journal of Cardiology and Cardiovascular Surgery. 2019; 12 (6): 494–9 (in Russ.). DOI: 10.17116/kardio201912061494
  2. Sui Y., Teng S., Qian J., Zhao Z., Zhang Q., Wu Y. Treatment outcomes and therapeutic evaluations of patients with left ventricular aneurysm. J. Int. Med. Res. 2019; 47 (1): 244–51. DOI: 10.1177/0300060518800127
  3. Paromov K.V., Lenkin A.I., Kuzkov V.V., Kirov M.Y. Targeted optimization of hemodynamics in the perioperative period: possibilities and prospects. Circulation Pathology and Cardiac Surgery. 2014; 18 (3): 59–66 (in Russ.). DOI: 10.21688/1681-3472-2014-3- 59-66
  4. Paromov K.V., Lenkin A.I., Kuzkov V.V., Kirov M.Y. Anesthesiologist and hemodynamics: what targeted therapy protocols give us. Pacific Medical Journal. 2012; 3 (49): 17–21 (in Russ.).
  5. Yovenko I.A., Kobelyatsky Yu.Yu., Tsarev A.V., Kuzmova E.A., Mashin A.M. Hemodynamic monitoring in the practice of intensive care of critical states. Emergency Medicine. 2016; 5 (76): 42–6 (in Russ.). DOI: 10.22141/2224-0586.5.76.2016.76433
  6. Smetkin A.A., Kirov M.Yu., Kuzkov V.V., Lenkin A.I., Eremeev A.V., Slastilin V.Yu., Borodin V.V. Hemodynamic and oxygen transport monitoring during myocardial revascularization on the working heart. General Reanimatology. 2009; 5 (3): 34–8 (in Russ.). DOI: 10.15360/1813-9779-2009-3-34
  7. Yankovskaya L.V., Pitsko D.V. Monitoring in cardiac intensive care units. International Heart and Vascular Disease Journal. 2016; 4 (12): 52–62 (in Russ.).
  8. Kirov M.Yu., Kuzkov V.V. Optimization of hemodynamics in the perioperative period: a review of the literature. Messenger of Anesthesiology and Resuscitation. 2012; 9 (5): 56–66 (in Russ.).
  9. Moroz G.B., Fominsky E.V., Shilova A.N., Karaskov A.M., Kornilov I.A., Pustovetova M.G., Lomivorotov V.V. Effect of targeted therapy with different infusion media on extravascular pulmonary water content in cardiac surgical patients. General Reanimatology. 2015; 11 (3): 54–64 (in Russ.). DOI: 10.15360/1813-9779-2015-3-54-64

About Authors

  • Galina V. Lobacheva, Dr. Med. Sci., Professor, Head of Department of Intensive Care Unit; ORCID
  • Mikhail D. Alshibaya, Dr. Med. Sci., Professor, Head of Department of Surgical Treatment of Coronary Heart Disease; ORCID
  • Maksim L. Mamalyga, Dr. Med. Sci., Leading Researcher; ORCID
  • Dzhanybek E. Musin, Cand. Med. Sci., Senior Researcher; ORCID
  • Zurab M. Cheishvili, Cand. Med. Sci., Senior Researcher; ORCID
  • Konstantin V. Krymov, Researcher; ORCID
  • Anna G. Maksimova, Anesthesiologist-Intensivist; ORCID

 If you found mistakes, select text and press Alt+A