Clinical Physiology of Circulation

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery


Assessment of predictors of unstable abdominal aortic aneurysm wall by computed tomography

Authors: Getsadze G.G., Aslanidis I.P., Dorofeev A.V., Arakelyan V.S., Mamalyga M.L., Fedorchenko P.V.

Company:
Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

E-mail: Сведения доступны для зарегистрированных пользователей.

DOI: https://doi.org/10.24022/1814-6910-2023-20-1-38-47

UDC: 616.136-007.64-073.756.8

Link: Clinical Physiology of Blood Circulaiton. 2023; 1 (20): 38-47

Quote as: Getsadze G.G., Aslanidis I.P., Dorofeev A.V., Arakelyan V.S., Mamalyga M.L., Fedorchenko P.V. Assessment of predictors of unstable abdominal aortic aneurysm wall by computed tomography. Clinical Physiology of Circulation. 2023; 20 (1): 38–47 (in Russ.). DOI: 10.24022/1814-6910-2023-20-1-38-47

Received / Accepted:  20.01.2023 / 17.03.2023

Download
Full text:  

Abstract

Objective. Determination of predictors of abdominal aortic aneurysm (AAA) wall instability and their thresholds, based on computed tomographic angiography (CTA).

Material and methods. 60 patients with infrarenal AАA were included in the study and divided into 2 groups: group 1 – with stable aortic wall, group 2 – with unstable aortic wall. The following parameters at different levels were assessed for each group: maximum vessel diameter and area of the vessel, lumen and wall at the level of the AАA proximal neck, at the level of the AАA maximum dilation and at the level of the terminal aorta; aneurysm extent; aneurysm area to normal vessel area ratio; thrombosis area to aneurysm area ratio; tangential stress of the aortic wall; degrees of aneurysm and entire abdominal aorta calcinosis. CT images were retrospectively analyzed on the image archiving and transmission system (Philips) workstation. Statistical analysis was performed using IBM SPSS (version 26).

Results. The study showed that wall instability occurred with a 35% increase in AАA area (p = 0.017) and a 1.3-fold increase in tangential tension (p = 0.007). The ratio of wall thrombosis area to aneurysm area is 72%. At the same time the lumen area does not change. ROC analysis revealed threshold values of unstable wall criteria: 1) maximum aneurysm size 58.7 mm; 2) aneurysm area 24.5 cm2, wall area 15.4 cm2; 3) ratio of AAA diameter to normal aortic diameter at diaphragm level 1.9; 4) ratio of wall thrombosis area to aneurysm area 0.66. Analysis of proximal neck, terminal section, extent and degree of calcification of aneurysm wall showed no significant changes in comparison with stable wall.

Conclusion. Analysis of the performed study showed the following threshold predictors of AAA wall instability: maximum AAA diameter – 5.9 cm; AAA area – 24.5 cm2; wall area with AAA parietal thrombus – 15.4 cm2; ratio of AAA diameter with normal aortic diameter at diaphragm level – 1.9; ratio of wall thrombosis area to aneurysm area – 0.66; AAA wall tension – 512 N/m2.

References

  1. Покровский А.В. Заболевания аорты и ее ветвей. М.: Медицина. 1979; 324.
  2. Rouet L., Dufour C., Collet B.A., Bredahl K. CT and 3D-ultrasound registration for spatial comparison of post-EVAR abdominal aortic aneurysm measurements: a cross-sectional study. Comput. Med. Imaging. Graph. 2019; 73: 49–59. DOI: 10.1016/j.compmedimag.2019.02.004
  3. Cebull H.L., Soepriatna A.H., Boyle J.J., Rothenberger S.M., Goergen C.J. Strain mapping from four-dimensional ultrasound reveals complex remodeling in dissecting murine abdominal aortic aneurysms. J. Biomech. Eng. 2019; 141 (6): 060907. DOI: 10.1115/1.4043075
  4. Zagrapan B., Eilenberg W., Prausmueller S., Nawrozi P., Muench K., Hetzer S. et al. A Novel Diagnostic and prognostic score for abdominal aortic aneurysms based on D-dimer and a comprehensive analysis of myeloid cell parameters. Thromb. Haemost. 2019; 119 (5): 807–20. DOI: 10.1055/s-0039-1679939
  5. Teng B., Zhou Z., Zhao Y., Wang Z. Combined curvature and wall shear stress analysis of abdominal aortic aneurysm: an analysis of rupture risk factors. Cardiovasc. Intervent. Radiol. 2022; 45: 752–60. DOI: 10.1007/s00270-022-03140-z
  6. Doyle B.J., Bappoo N., Syed M.B.J., Forsythe R.O., Powell J.T., Conlisk N. et al. Biomechanical assessment predicts aneurysm related events in patients with abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2020; 60: 365–73. DOI: 10.1016/j.ejvs.2020.02.023
  7. Polzer S., Gasser T. Ch., Vlachovský R., Kubícek L., Lambert L., Man V. et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J. Vasc. Surg. 2020; 71 (2): 617–26. DOI: 10.1016/j.jvs.2019.03.051
  8. Бокерия Л.А., Гудкова Р.Г., Аракелян В.С. Хирургическое лечение аневризм грудной и грудобрюшной аорты в России. Грудная и сердечно-сосудистая хирургия. 2017; 59 (3): 181–90. DOI: 10.24022/0236-2791-2017-59-3-181-190
  9. Antunes B.F.F., Tachibana A., Mendes C.A., Lembrança L., Silva M.J., Teivelis M.P. Signs of impending rupture in abdominal aortic and iliac artery aneurysms by computed tomography: outcomes in 41 patients. Clinics. 2021; 76: е2455. DOI: 10.6061/clinics/2021/e2455
  10. Калинин Р.Е., Пшенников А.С., Сучков И.А., Деев Р.В., Мжаванадзе Н.Д. Основы ангиологии. М.: ГЭОТАР-Медиа; 2018; 112.
  11. Agatston A.S., Janowiz W.R., Hildner F.J., Zusmer N.R., Viamonte M., Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15 (4): 827–32. DOI: 10.1016/0735-1097(90)90282-t
  12. Chaikof E.L., Dalman R.L., Eskandari M.K., Jackson B.M., Lee W.A., Mansour M.A. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67 (1): 2–77. DOI: 10.1016/j.jvs.2017.10.044
  13. McClarty D.B., Kuhn D.C.S., Boyd A.J. Hemodynamic Changes in an actively rupturing abdominal aortic aneurysm. J. Vasc. Res. 2021; 58 (3): 172–9. DOI: 10.1159/000514237
  14. Nana P., Spanos K., Dakis K., Brodis A., Kouvelos G. Imaging predictive factors of abdominal aortic aneurysm growth. J. Clin. Med. 2021; 10 (9): 1917. DOI: 10.3390/jcm10091917
  15. Buijs R.V.C., Willems T.P., Tio R.A., Boersma H.H., Tielliu I.F.J., Slart R.H.J.A. et al. Current state of experimental imaging modalities for risk assessment of abdominal aortic aneurysm. J. Vasc. Surg. 2013; 57 (3): 851–9. DOI: 10.1016/j.jvs.2012.10.097
  16. Riveros F., Martufi G., Gasser T.C., Rodriguez-Matas J.F. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann. Biomed. Eng. 2015; 43: 2253–64. DOI: 10.1007/s10439-015-1267-x
  17. Domonkos A., Staffa R., Kubicek L. Effect of intraluminal thrombus on growth rate of abdominal aortic aneurysms. Int. Angiol. 2019; 38: 39–45. DOI: 10.23736/S0392-9590.18.04006-3
  18. Koole D., Zandvoort H.J., Schoneveld A., Vink A., Vos J.A., van den Hoogen L.L. et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 2013; 57: 77–83. DOI: 10.1016/j.jvs.2012.07.003
  19. Haller S.J., Crawford J.D., Courchaine K.M., Bohannan C.J., Landry G.J., Moneta G.L. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67: 1051–8. DOI: 10.1016/j.jvs.2017.08.069 20.
  20. Chengcheng Z., Joseph R.L., Yuting W., Warren G., David S., Michael D.H. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. 2020; 294 (3): 707–13. DOI: 10.1148/radiol.2020191723
  21. Asada Y., Yamashita A., Sato Y., Hatakeyama K. Patho-physiology of atherothrombosis: mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol. Int. 2020; 70 (6): 309–22. DOI: 10.1111/pin.12921 22. Leow K., Szulc P., Schousboe J.T., Kiel D.P., TeixeiraPinto A., Shaikh H. et al. Prognostic value of abdominal aortic calcification: a systematic review and metaanalysis of observational studies. J. Am. Heart Assoc. 2021; 10 (2): e017205. DOI: 10.1161/JAHA.120.017205
  22. Hermann D.M., Lehmann N., Gronewold J., Bauer M., Mahabadi A.A., Weimar C. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (6): 684–90. DOI: 10.1093/ehjci/jeu293
  23. Buijs R.V., Willems T.P., Tio R.A., Boersma H.H., Tielliu I.F., Slart R.H. et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2013; 46 (5): 542–8. DOI: 10.1016/j.ejvs.2013.09.006
****
  1. Pokrovskiy A.V. Diseases of the aorta and its branches. Moscow; 1979; 324 (in Russ.).
  2. Rouet L., Dufour C., Collet B.A., Bredahl K. CT and 3D-ultrasound registration for spatial comparison of post-EVAR abdominal aortic aneurysm measurements: a cross-sectional study. Comput. Med. Imaging. Graph. 2019; 73: 49–59. DOI: 10.1016/j.compmedimag.2019.02.004
  3. Cebull H.L., Soepriatna A.H., Boyle J.J., Rothenberger S.M., Goergen C.J. Strain mapping from four-dimensional ultrasound reveals complex remodeling in dissecting murine abdominal aortic aneurysms. J. Biomech. Eng. 2019; 141 (6): 060907. DOI: 10.1115/1.4043075
  4. Zagrapan B., Eilenberg W., Prausmueller S., Nawrozi P., Muench K., Hetzer S. et al. A Novel Diagnostic and prognostic score for abdominal aortic aneurysms based on D-dimer and a comprehensive analysis of myeloid cell parameters. Thromb. Haemost. 2019; 119 (5): 807–20. DOI: 10.1055/s-0039-1679939
  5. Teng B., Zhou Z., Zhao Y., Wang Z. Combined curvature and wall shear stress analysis of abdominal aortic aneurysm: an analysis of rupture risk factors. Cardiovasc. Intervent. Radiol. 2022; 45: 752–60. DOI: 10.1007/s00270-022-03140-z
  6. Doyle B.J., Bappoo N., Syed M.B.J., Forsythe R.O., Powell J.T., Conlisk N. et al. Biomechanical assessment predicts aneurysm related events in patients with abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2020; 60: 365–73. DOI: 10.1016/j.ejvs.2020.02.023
  7. Polzer S., Gasser T. Ch., Vlachovský R., Kubícek L., Lambert L., Man V. et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J. Vasc. Surg. 2020; 71 (2): 617–26. DOI: 10.1016/j.jvs.2019.03.051
  8. Bockeria L.A., Gudkova R.G., Arakelyan V.S. Surgical treatment of aneurysms of the thoracic and phrenic aorta in Russia. Russian Journal of Thoracic and Cardiovascular Surgery. 2017; 59 (3): 181–90. DOI: 10.24022/0236-2791-2017-59-3-181-190
  9. Antunes B.F.F., Tachibana A., Mendes C.A., Lembrança L., Silva M.J., Teivelis M.P. Signs of impending rupture in abdominal aortic and iliac artery aneurysms by computed tomography: outcomes in 41 patients. Clinics. 2021; 76: е2455. DOI: 10.6061/clinics/2021/e2455
  10. Kalinin R.E., Pshennikov A.S., Suchkov I.A., Deev R.V., Mzhavanadze N.D. Fundamentals of angiology. Moscow; 2018; 112 (in Russ.).
  11. Agatston A.S., Janowiz W.R., Hildner F.J., Zusmer N.R., Viamonte M., Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15 (4): 827–32. DOI: 10.1016/0735-1097(90)90282-t
  12. Chaikof E.L., Dalman R.L., Eskandari M.K., Jackson B.M., Lee W.A., Mansour M.A. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67 (1): 2–77. DOI: 10.1016/j.jvs.2017.10.044
  13. McClarty D.B., Kuhn D.C.S., Boyd A.J. Hemodynamic Changes in an actively rupturing abdominal aortic aneurysm. J. Vasc. Res. 2021; 58 (3): 172–9. DOI: 10.1159/000514237
  14. Nana P., Spanos K., Dakis K., Brodis A., Kouvelos G. Imaging predictive factors of abdominal aortic aneurysm growth. J. Clin. Med. 2021; 10 (9): 1917. DOI: 10.3390/jcm10091917
  15. Buijs R.V.C., Willems T.P., Tio R.A., Boersma H.H., Tielliu I.F.J., Slart R.H.J.A. et al. Current state of experimental imaging modalities for risk assessment of abdominal aortic aneurysm. J. Vasc. Surg. 2013; 57 (3): 851–9. DOI: 10.1016/j.jvs.2012.10.097
  16. Riveros F., Martufi G., Gasser T.C., Rodriguez-Matas J.F. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann. Biomed. Eng. 2015; 43: 2253–64. DOI: 10.1007/s10439-015-1267-x
  17. Domonkos A., Staffa R., Kubicek L. Effect of intraluminal thrombus on growth rate of abdominal aortic aneurysms. Int. Angiol. 2019; 38: 39–45. DOI: 10.23736/S0392-9590.18.04006-3
  18. Koole D., Zandvoort H.J., Schoneveld A., Vink A., Vos J.A., van den Hoogen L.L. et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 2013; 57: 77–83. DOI: 10.1016/j.jvs.2012.07.003
  19. Haller S.J., Crawford J.D., Courchaine K.M., Bohannan C.J., Landry G.J., Moneta G.L. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 2018; 67: 1051–8. DOI: 10.1016/j.jvs.2017.08.069 20.
  20. Chengcheng Z., Joseph R.L., Yuting W., Warren G., David S., Michael D.H. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. 2020; 294 (3): 707–13. DOI: 10.1148/radiol.2020191723
  21. Asada Y., Yamashita A., Sato Y., Hatakeyama K. Patho-physiology of atherothrombosis: mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol. Int. 2020; 70 (6): 309–22. DOI: 10.1111/pin.12921 22. Leow K., Szulc P., Schousboe J.T., Kiel D.P., TeixeiraPinto A., Shaikh H. et al. Prognostic value of abdominal aortic calcification: a systematic review and metaanalysis of observational studies. J. Am. Heart Assoc. 2021; 10 (2): e017205. DOI: 10.1161/JAHA.120.017205
  22. Hermann D.M., Lehmann N., Gronewold J., Bauer M., Mahabadi A.A., Weimar C. Thoracic aortic calcification is associated with incident stroke in the general population in addition to established risk factors. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (6): 684–90. DOI: 10.1093/ehjci/jeu293
  23. Buijs R.V., Willems T.P., Tio R.A., Boersma H.H., Tielliu I.F., Slart R.H. et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2013; 46 (5): 542–8. DOI: 10.1016/j.ejvs.2013.09.006

About Authors

  • Gela G. Getsadze, Radiologist; ORCID
  • Irakliy P. Aslanidis, Dr. Med. Sci., Professor, Deputy Director for Research, Head of Department of Nuclear Diagnostics; ORCID
  • Aleksey V. Dorofeev, Cand. Med. Sci., Head of Department of X-ray Diagnostics, CT and MRI; ORCID
  • Valeriy S. Arakelyan, Dr. Med. Sci., Professor, Head of Department of Arterial Pathology Surgery; ORCID
  • Maksim L. Mamalyga, Dr. Med. Sci., Senior Researcher; ORCID
  • Polina V. Fedorchenko, Radiologist; ORCID

 If you found mistakes, select text and press Alt+A